Exercising receptor-site similarity:

From Off-Target Identification to Scaffold Hopping

Steven Muskal, Ph.D.

Chief Executive Officer Eidogen-Sertanty, Inc. smuskal@eidogen-sertanty.com

Protein Structure Growth is Accelerating

> 50K Structures/co-complexes (Aug-2008)

> 600 deposits per month → >150/week!

PDB Growth source: rcsb.org

Drugs developed using SBDD

Inhibitor/Drug	Disease	Company(s)	Protein targeted	Enzyme Family
STI-571/Gleevec	Chronic Myeloid Leukemia	Novartis	c-Abl kinase	Tyrosine kinase
Fluoroquinolone/Ciprofloxacin	Bacterial infection	Bayer	Gyrase	ATP Hydrolase
Saquinavir/Invirase, Ritonavir/Norvir, Indinavir/ Crixivan, Nelfinavir/Viracept, Amprenavir/Agenerase, Fosamprenavir/Lexiva,	AIDS	Roche, Abbott, Agouron, Merck, Vertex	HIV-1 Protease	Aspartylprotease
Trusopt	Glaucoma	Merck	Carbonic Anhydrase	Lyase
Thymitaq	Cancer	Agouron	Thymidylate synthase	Methyl transferase
Celecoxib/Celebrex, Rofecoxib/Vioxx	Inflammation, rheumatoid arthritis	Searle, Merck	Cox-2	Oxidoreductase
AG3340/Prinomastat	Cancer	Agouron	Matrix metalloprotease	Metalloprotease
Oseltamivir phosphate/Tamiflu, Zanamivir/Relenza	Influenza	Roche	Neuraminidase	Glycosidase

Industrializing an Information Rich Craft

• Pharma cost reductions (reductions in jobs, spending, etc.)

 \rightarrow Fewer IT specialists with less resource, supporting more people

One-at-a-time computational efforts are bottlenecks

 \rightarrow Many proteomic riches remain untapped

Non-specialist driven workflow-apps have become necessary!

Bringing Proteomic Riches to Non-Specialists

Automated Modeling and Proteomic Structural Mining

- Sequence-to-Structure Calculation Cascade
- >Search-by: KeyWord, Sequence, Ligand, Protein Structure, Receptor-Sites, etc.
- Exploit Structural fold and receptor-site conservation

→Off-Target Identification (opportunities v. liabilities)

\rightarrow Borrowing Matter Ideas from co-complexes and protein structures

About Eidogen-Sertanty

- Knowledge-Driven Discovery Solutions Provider
 - Formed in March 2005 when Sertanty (Libraria→Sertanty 2003) acquired Eidogen (Bionomix 2000)
 - >\$20M Invested in Technology Development
 - 12 FTE's
 - Worldwide Customerbase
 - Cash-Positive
- Chemogenomic Databases & Analysis Software
 - *TIPTM* Structural Informatics Platform
 - *KKB™* Kinase SAR and Chemistry Knowledgebase
 - CHIP[™] Chemical Intelligence Platform
- DirectDesign[™] Discovery Collaborations
 - In Silico Target Screening ("Target Fishing" and Repurposing)
 - Target and compound prioritization services
 - Fast Follower Design: Novel, Patentable Leads

TIP Algorithm Engine

STRUCTFAST™

 $STructure \ Realization \ Utilizing \ Cogent \ Tips \ From \ Aligned \ Structural \ Templates$

Basic Principle: Gaps known to exist should not be strongly penalized.

Leverages experimental structure and structural alignment data to create better alignments

1) Convergent Island Statistics: A fast method for determining local alignment score significance. Bioinformatics, 2005, 21, 2827-2831

2) STRUCTFAST: Protein Sequence Remote Homology Detection and Alignment Using Novel Dynamic Programming and Profile-Profile Scoring Proteins. 2006 64:960-967

SiteSeekerTM

Geometric Site-Finding Algorithms Find Many Pockets

But they don't know which pockets are important!

Evolutionary Trace Approach

Can't clearly define site boundary Not all conserved residues are functionally relevant

SiteSeeker combines both methods

Reliability & Confidence

We use proteins with apo- & co-crystal structures in the PDB to test the accuracy & reliability of method

Allows us to map SiteSeeker score to predict confidence!
(e.g. At this SiteSeeker score, 80% are "real" co-crystal sites)
→ Sites with <60% confidence are not stored in TIP

Weighted Clique Detection Algorithm

Importance of Points Related To Conservation In Multiple Sequence Alignment

Surface Atoms Assigned One of 5 Different Chemical Characters Matching points increase the *SiteSorter* similarity score

TIP Content

Automatically updated with new models as the PDB grows

👤 Eidogen Sertanty

Off-Target Opportunities

Intra-Family Opportunities

Inter-family Opportunities

PXR – Promiscuous Ligand-Binding Site

Pregnane X-receptor – PXR ("sensor)" →CYP3A4 ("executioner") <u>PXR Binds > 50% drugs</u> Including some bile acids, statins, herbal components, a selection of HIV protease inhibitors, calcium channel modulators, numerous steroids, plasticizers and monomers, organochlorine pesticides, a peroxisome proliferator-activated receptorãantagonist, xenobiotics and endobiotics...

Site Similarity Coloring

Highly Similar Receptor regions

Dissimilar Receptor regions

LIMK1 – ATP binding site comparison

The ATP site of LIMK1 shares a high level of homology with several well-studied kinases

Kinase SAR Knowledgebase – Hot Targets

>362,000 SAR data points curated from >4,270 journal articles and patents >130 Bayesian QSAR Models

Data Points

>500

>50

STE

CK1

AGC

>250

under 50

>30 000

>10,000

>5000 >2500

>1000

TKL

Kinase Knowledgebase (KKB)

Kinase inhibitor structures and SAR data mined from

> 4278 journal articles/patents

• KKB Content Summary (Q2-2008):

of kinase targets: >390
of SAR Data points: > 362,000
of unique kinase molecules with SAR data: >120,000
of annotated assay protocols: >16,000
of annotated chemical reactions: >2,300
of unique kinase inhibitors: >465,000 (~340K enumerated from patent chemistries)

KKB Growth Rate:

- Average **15-20K** SAR data points added per quarter
- Average 20-30K unique structures added per quarter

Kinase Knowledgebase (KKB)

Kinase inhibitor structures and SAR data mined from

Kinase Validation Set

Three sizable datasets freely available to the research community

http://www.eidogen-sertanty.com/kinasednld.php

LigandCross Workflow

New Molecules via LigandCross

Novel Ligands via Ligand Crossover

Eidogen Sertanty

From Ligand Query to Sites to New Ligand Ideas

Step 1: Find Co-complexes and Sites from Ligand-Structure-Search

Molecule	ligname	similarity	pdbcode	siteeid	FourCode	pdbID	pdbBnxNumber	proteinld	title	classification	source	compound	releaseDate	journalTitle	journalReference	exptype
	STI	1	2pi0A	1309707	2010	2010	1305799	42526	LCK BOUND TO MATINB	TRANSFERASE	MOL_D: 1; ORGANISM_SCIENTIFIC: HOMO SAPIENS; ORGANISM_COMMON: HUMAN; GENE:LCK; EXPRESSION_SYSTEM: SPODOPTERA FRUGIPERDA; EXPRESSION_SYSTEM_COMMON: FALL ARMYWORM; EXPRESSION_SYSTEM_VECTOR_TYPE: ION_SYSTEM_PLASMID:	MOL_ID: 1; MOLECULE: PROTO- ONCOGENE PROTEIN KINASE LCK; CHAIN: A; FRAGMENT: PROTEIN KINASE; SYNONYM: P56-LCK, LYMPHOCYTE CELL- SPECIFIC PROTEIN- TY/ROSINE KINASE, LSK, T CELL- SPECIFIC PROTEIN- TY/ROSINE KINASE; EC: 2.7.10.2; ENGINEERED: YES	09-OCT-07	CLASSIFYING PROTEIN KINASE STRUCTURES GUIDES USE OF LIGAND- SELECTIVITY PREDICT INACTIVE CONFORMATIONS: STRUCTURE OF LCK/IMATINIB COMPLEX	PROTEINS 2007	XRAY DIFFRACTION
	STI	1	20iqA	1146914	2oiq	2oiq	1125109	26318	STRUCTURE OF CHICKEN C-SRC KINASE DOMAIN IN COMPLEX WITH THE CANCER DRUG IMATINIB.	TRANSFERASE	; ORGANISM_SCIENTIFIC: GALLUS; M_COMMON: CHICKEN; GENE: ESCHERCHIA COLI; EXPRESSION_SYSTEM. EXCHERCHIA COLI; EXPRESSION_SYSTEM_COMMON: BACTERIA; EXPRESSION_SYSTEM_STRAIN: BL21DE3; EXPRESSION_SYSTEM_VECTOR_TYPE: PLASMID; EXPRESSION_SYSTEM_PLASMID: PET28	MOL_UD: 1; MOLECULE: PROTO- ONCOGENE TY/ROSINE- PROTEIN KINASE SRC; CHAIN; A, B; FRAGMENT: KINASE DOMAIN; SYNOIYYM: P60-SRC, C- SRC, PF60C- SRC, PF60C- SRC; FC: 2.7.10.2; ENGINEERED: YES	20-MAR-07	C-SRC BINDS TO THE CANCER DRUG IMATINIB WITH AN INACTIVE ABL/C-KIT CONFORMATION AND A DISTRIBUTED THERMODYNAMIC PENALTY.	STRUCTURE V. 15 299 2007	XRAY DIFFRACTION
	STI	1	2hyyA	918207	Zhyy	2hyy	904013	16961	HUMAN ABL KINASE DOMAIN IN COMPLEX WITH IMATINIB (STI571, GLIVEC)	TRANSFERASE	MOL_ID: 1; ORGANISM_SCIENTIFIC: HOMO SAPIENS; ORGANISM_COMMON: HUMAN; GENE: ABL1; EXPRESSION_SYSTEM: SPODOPTERA FRUGPERDA; EXPRESSION_SYSTEM_COMMON: FALL ARMYWORM	MOL_D: 1; MOLECULE: PROTO- ONCOGENE TYROSINE- PROTEIN KINASE ABL1; CHAIN: A, B, C, D; SYNONYM: P150, C-ABL, ABELSON MURINE LEUKEMIA VIRAL ONCOGENE HOMOLOG 1; EC: 2.7.10.2;	16-JAN-07	STRUCTURAL BIOLOGY CONTRIBUTIONS TO THE DISCOVERY OF DRUGS TO TREAT CHRONIC MY'ELOGENOUS LEUKAEMIA.	ACTA CRYSTALLOGR.,SECT.D V. 63 80 2007	XRAY DIFFRACTION

Step 2: Find Other Receptor Sites from <u>Site-Similarity</u> Search

Site Name	Locus	Ligand	%Cor	Af Sequence Positions	
pdb2pl0/s1309707 (chain A)	LCK	STI	100	.L.V.AVK.E.LM.L.LV.I.TEYM.GS.I.YIHR.L.IADF	-
pdb2ofv/s916548 (chain B)	LCK	242	100	. U. V. AVK. B. IM. B. IV. I. FEYN. G. I. Y. H. B. LADF. I	- SSI
pdb2rl5/s1396160 (chain A)	-	2RL	100	LIG V.AVK.L.E.II.I.V.V.TEPCKFGN.L.CIR.L.ICDP	
pdb2e2b1/s1284639 (chain B)	ABL	406	100	L. Y. V. A. K. E. VY. I. LV. I. TEFMT. C. L. FIHRD. L. VADE	-

Example Site Similarity Results (Query: s1309707)

Site	SiteLigand	SiteProtein	SiteScore	ContactScore
1309707	STI	2pl0A	1000	1
1420904	C92	3cpbB	110.906	0.7
1384893	900	3b8qB	121.051	0.67
1322334	276	2qu5A	117.866	0.66
1284638	406	2e2bA	119.18	0.64
1396160	2RL	2rl5A	121.208	0.63
1400124	NIL	3cs9D	111.198	0.62
867405	7MP	2hiwA	101.948	0.61
916548	242	2ofvB	109.214	0.6
1147514	MUH	2oscA	104.115	0.6
776230	WBT	1wbtA	101.635	0.6
916805	1N8	2og8A	116.819	0.59
394066	PRC	1fpuB	107.297	0.57
1415780	C19	Зср9А	104.078	0.56
911671	KIN	2hznA	106.08	0.56
1148488	608	2p2iB	109.41	0.55
1300447	GIG	2oh4A	110.471	0.53
1320735	857	2qu6B	116.424	0.52
437653	B96	1kv2A	107.323	0.52
691631	L11	1w83A	101.268	0.52
1147212	RAJ	2008X	104.058	0.52
910098	GIN	2hz0B	108.713	0.51
1396708	P38	3bv2A	124.962	0.51
436174	BMU	1kv1A	88.568	0.5
1412158	G2G	2puuA	118.296	0.5
775147	LI3	1wbvA	85.135	0.5
1415688	C52	ЗсрсВ	102.25	0.48
1431710	GK6	3d83A	104.164	0.48

Example Ligands Extracted from Similar Sites

臭 Eidogen Sertanty

Step 3: LigandCross – Mixing Ligand Features from Aligned Sites

Example LigandCross Results

JEIdogen Sertanty

Step 4: LigandCross Ligands reDocked into s1309707

LigandCross Ligands with Reported Biological Activity

	Kinase Knowledgebase (plC50)								Bayesian Model Predictions (PP)											
LC-ID	ABL	PDGFR	PDGFRB	JAK3	KDR	LCK	MAPK14	TEK	KIT	RAF1	ABL	PDGFR	PDGFRB	JAK3	KDR	LCK	MAPK14	TEK	KIT	RAF1
G2G_STI_12	6.7	8	8								0.40	0.90	0.76	0.81	0.59	0.15	0.89	0.45	0.70	0.37
900_STI_1	6.1	8	8								0.38	0.91	0.76	0.72	0.55	0.16	0.88	0.42	0.71	0.55
7MP_1N8_4				7.8	9	9.5	8.7				0.36	0.49	0.34	0.32	0.94	1.00	0.95	0.67	0.86	0.39
7MP_1N8_2		•		6.8	8.3	9.5	9			0	0.37	0.46	0.31	0.44	0.92	1.00	0.92	0.69	0.84	0.45
7MP_RAJ_3					8.4	1		8.4	Ì		0.35	0.73	0.50	0.49	0.92	0.81	0.86	0.94	0.74	0.37
7MP_GIN_4					7.6			•			0.16	0.50	0.40	0.82	0.95	0.67	0.70	0.41	0.76	0.51
242_C52_2		•							7.9	0	0.30	0.28	0.29	0.74	0.80	0.66	0.74	0.31	1.00	0.43
LI3_L11_1						1	7.2		Ì		0.31	0.73	0.55	0.84	0.74	0.69	0.62	0.36	0.76	0.85
608_GIG_7										6.1	0.28	0.61	0.57	0.69	0.93	0.50	0.60	0.68	0.85	0.50
KIN_BMU_4		•								6.1	0.31	0.43	0.45	0.78	0.75	0.57	0.77	0.33	0.81	0.25
G2G_KIN_3										6.1	0.25	0.51	0.52	0.75	0.89	0.59	0.64	0.43	0.84	0.43

Conclusions

 Significant receptor-site similarities exist within and across target families

• The structurally resolved and modelable proteome is a very rich source for new matter ideas

 LigandCross can be an effective strategy to generate novel, bioactive molecules from co-complex information.

Acknowledgements

- Stephan Schürer
- Kevin Hambly
- Joe Danzer
- Brian Palmer
- Derek Debe
- Aleksandar Poleksic
- Accelrys/Scitegic Shikha Varma-O'Brien/Ton van Daelen
- ChIP: National Institute of Standards and Technology (NIST) –

ATP program: 'Chemical Intelligence Platform for Rapid Discovery of DrugLeads'

Chemical Intelligence Platform (ChIP™)

ChIP: Navigating Accessible Synthetic Space

SC Schurer, P Tyagi, SM Muskal, *J. Chem. Inf. Model.* **45**:239-48 (Mar-Apr, 2005). Development funded by a \$2.5M NIST-ATP Grant

Building Block Sources May Be Changed, Enabling Diversity Oriented or Focused Synthesis

JEidogen Sertanty

ChIP: Protocol Shuffling Chemistries

ChIP[™] mixes and matches reaction methods so that novel scaffolds are generated *with* their synthetic road-maps

Ligand pharmacophoric potential

Journal of Chemical Information and Computer Sciences, 1999, 39 (3): 569-74

Pharmacophoric Feature

7 pharmacophore types :

- H-bond acceptor (A) & donor (D)
- negative (N) & postive charges (P)
- aromatic (R), hydrophobic (H)
- other (X)

<u> 6 distance ranges</u> :

2-4.5, 4.5-7, 7-10, 10-14, 14-19, 19-24 Å

Enumerate 3-point pharmacophores -> 10,549

Target specific ligands share pharmacophoric feature

Non-obvious Me-Too's

MDLSim: 46.8/100.0 DaySim: 0.32/1.0 **PFPSim: 0.88/1.0**

MWT: 314.4; LogP: 0.27; pKa [2.30, 8.20]

Target: Histamine H2-antagonist.

Oral Avail.: 52% (±11) Urinary Excretion: 69% (±6) Plasma Bound: 15% (±3) Clearance: 730 mL/min (±80) Half-Life: 2.1 hr (±0.2) Effective Conc.: 100 ng/mL

RANITIDINE (Zantac) "Antiulcer"

MWT: 252.3; LogP: 0.40; pKa: [6.80]

Target: Histamine H2-antagonist.

Oral Avail.: 62% (±6) Urinary Excretion: 62% (±20) Plasma Bound: 19% Clearance: 540 mL/min (±130) Half-Life: 1.9 hr (±0.3) Effective Conc.: 800 ng/mL

CIMETIDINE (Tagamet) "Antiulcer"

ChIP-ing Towards Me-Too's

Known PDE-IV Inhibitors

Application to QSAR and Focused Library Design. J. Chem. Inf. Comput. Sci. 1999, 39, 569-574.

Example ChIP Generated Synthetic Road-Maps

e.g. Non-specialist Proteomic Mining

StructSorter[™]

Pairwise StructSorter

Various dynamic programming seeding methods are used in order to utilize as much information as is available.

Dynamic programming scores are fit to an EVD to assess alignment significance.

Database-wide StructSorter

Clustering Scheme and Hierarchical Protocol

- 1) PDB sequences clustered at 90% identity and 95% coverage.
- 2) N-by-N comparison of one representative chain from each cluster
 - (All other chains are only compared to the representative's significant hits)

Allows structural alignment database to be computed in 1.5 months instead of 2.5 years.

StructSorter: A Method for Continuously Updating a Comprehensive Protein Structure Alignment Database J. Chem. Inf. Model. 2006, 46, 1871-1876

StructSorter Example: Rhinovirus protease

StructSorter computes and stores alignments between Rhinovirus Protease and other mammalian proteases in TIP, despite very low overall sequence and structural similarity

EVE Targ	et Analyz	er						
File Expe	ort Filterii	ng Ligand Y	Mindow Hel	p				
Sequences	Chains	Sites E	tinding Mode	s				
	2	10		D	escrip	Alon	Chain Alignments	Similarity Dendrogram
Chain Name	Locus	Organism	CRMS 🗇	%ID	Sites	Description		· · · · · · · · · · · · · · · · · · ·
db1cqq/A	POLG	H.rhinovirus 2	-	-	2	Chain A, MOL_ID: 1; MOLECULE: TYPE 2 RHINOVIRUS 3C F		
db1q31/A	POLG	T.etch virus	2.325	11	2	Chain A, NUCLEAR INCLUSION PROTEIN A		
db1q31/B	POLG	T.etch virus	2.324	11	2	Chain B, NUCLEAR INCLUSION PROTEIN A	14-200 00-00-0-0-00-00000	
db117z/A	TRY2_R	B.taurus	2.753	11	1	Chain A, TRYPSIN II, ANIONIC		
db1a0j/A	TRY3_S	. S.salar	2.581	11	5	Chain A, TRYPSIN	- House and the second se	
db1spj/A	KLK1	H.sapiens	2.704	10	5	Chain A, KALLIKREIN 1	- CONTRACTOR - CONTRACTOR	
udb1mza(A	GRAK	H.sapiens	3.043	9	2	Chain A, PRO-GRANZYME K		
db1mzd/A	GRAK	H.sapiens	3.530	10	2	Chain A, PRO-GRANZYME K		
db1bio/_	CFAD	H.sapiens	2.822	8	5	Chain _, COMPLEMENT FACTOR D	- I mark to the House House	
db1bru/P	EL2_PIG	S.scrofa	2.696	9	2	Chain P, ELASTASE		
db1p57/B	HEPS	H.sapiens	2.705	9	2	Chain B, SERINE PROTEASE HEPSIN		
db1a0I/A	TRB2	H.sapiens	2.687	10	2	Chain A, BETA-TRYPTASE		
node13999	MPN	H.sapiens	2.805	9	3	Pancreasin precursor (EC 3.4.21) (Marapsin) (Channel-act		
db1ybw/A		H.sapiens	2.722	11	2	Chain A, HEPATOCYTE GROWTH FACTOR ACTIVATOR PRE		
db1eaw.(A	ST14_H	B.taurus	2.713	7	1	Chain A SUPPRESSOR OF TUMORIGENICITY 14		
nodel5711	PRSS12	H.sapiens	2.867	8	3	Neurotypsin precursor (EC 3.4.21) (Motopsin) (Leydin)		
db1lmw/B	UROK	Hisapiens	2.924	10	5	Chain B. UROKINASE-TYPE PLASMINOGEN ACTIVATOR		
db1lmwD	UROK	H.sapiens	2.846	10	5	Chain D. UROKINASE-TYPE PLASMINOGEN ACTIVATOR		
nodel3428	PROZ	H.sapiens	3.007	8	4	Vitamin K-dependent protein Z precursor	CONTRACTOR DIVISION	
db1h1b/A	ELNE H	Hisapiens	2.672	9	8	Chain A LEUKOCYTE ELASTASE		
nodel2909	HP	Hisapiens	3.375	5	3	Hantoglobin precursor	I-management - management	1 ——h I
dhtiauA	GRAB	Hsapiens	2.619	11	11	Chain & GRANZYME B		
db1131/A	MCT1	H.sapiens	2.808	10	12	Chain A. CHYMASE		
db1pip/A	MCT1	Hisapiens	3.298	10	6	Chain A. CHYMASE		
db1azz/B	COGS	C nugilator	2.625	8	2	Chain B. COLLAGENASE		
db1azz/A	COGS	C.pugilator	2.615	8	2	Chain A. COLLAGENASE	- CONTRACTOR - CONTRACTOR	
db1au8/A	CATG	H.sapiens	2.588	11	2	Chain A. CATHEPSIN G		
db1 apz/A	C1R H	Hsapiens	3.379	11	12	Chain A COMPLEMENT C1R COMPONENT		
model2909	HP	H.sapiens	3.047	5	5	Haptoolobin precursor		
db1gpz/B	C1R H	Hisapiens	3.373	10	6	Chain B. COMPLEMENT C1R COMPONENT	(
adb1sq0A	KLK4	M.musculus	3.614	8	3	Chain A NERVE GROWTH FACTOR		
db1sqtX	KLK4	M musculus	3.623	8	4	Chain X. NERVE GROWTH FACTOR		
db1wcz/A	STSP	S aureus	2.604	10	2	Chain A GLUTAMYL ENDOPEPTIDASE		
nodel1370	PRSS11	Hisapiens	2.822	12	1	Serine protease HTRA1 precursor (EC 3.4.21-) (L56)		
db1agi/A	ETA ST.	S aureus	2 558	7	2	Chain A EPIDERMOLYTIC TOXIN A		
db1dxp/A	POLG	H.c virus	2.677	11	3	Chain A. PROTEASE/HELICASE NS3 (P70)		h
db1bettA	POLG	D virus type 2	2,739	9	1	Chain & DENGUE VIRUS NS3 SERINE PROTEASE		
adh1bt7/	POLG	Hevirus	3157	11	2	Chain NS3 SERINE PROTEASE		
AlbthoalA	GLUP	Spriseus	2,730	8	4	Chain A GLUTAMIC ACID-SPECIFIC PROTEASE		
/uu mpgrs	OCOT_III	0.griseus	2.1.90		The second se			

臭 Eidogen Sertanty

SiteSeeker Example

Fructose-1,6-bisphosphatase FBPase

SiteSeeker Example: PTP1B Allosteric Site

All structures in TIP are annotated with known and predicted binding sites, along with **confidence** levels for each annotation

Virtual Target Screening Example: COX-2

Example: Identifying potential "off-targets" for COX-2 inhibitors

Use site to query TIP and rank similar binding sites

тпе схрот		na winuow He	ф 1	
Sequences	Chains Sites	Binding Mode	S	
	Des	scription		
Oite Manag	1	Description		SiteSorter
site Name	DCU2 MOUSE	CEO: 4 DUCM	%C0/11	Similarity V
ndb2nra/e4720		Predicted Site	97	74.67
ndb1efb(s3812	SUHA HUMAN	Predicted Site	97	73.70
ndb1oid(s4695	AOEB HUMAN	Predicted Site	97	72.02
ndh1d1e/e381	ADHZ HUMAN	Predicted Site	78	71.50
ndh1deh/s394	ADHR HUMAN	Predicted Site	80	71.05
ndh1ivh/e4125			100	69.09
model/123/_1	HSDCR	Predicted Site	89	68.00
model171778		Predicted Site	98	68.77
model220469		Predicted Site	85	68.45
ndb1bv3(s4121	SLICE HUMAN	Predicted Site	67	68.23
model30570_8	HSD11B2	NAP: NADP NI	100	67.93
pdb1v4s/s5011.	HXK4 HUMAN	Predicted Site	98	67.63
model5407 67	PDE3A	Predicted Site	87	67.58
model12228 3	HSD11B1	Predicted Site	66	66.25
pdb3qrt/s4054	GSHR HUMAN	FAD: FLAVIN-A	100	66.23
pdb1og5/s467	CPC9_HUMAN	Predicted Site	97	65.97
pdb1xu9/s5232.	HSD11B1	Predicted Site	91	65.69
model13939_2	TUBB	GDP: GUANOS	100	65.59
pdb1pq2/s477	CPC8_HUMAN	HEM: PROTOP	100	65.57
pdb1dqa/s378	HMDH_HUMAN	NAP: NADP NIC	100	65.48
model5988_3	SLC25A4	Predicted Site	98	65.31
model14830_1	ADH1C	Predicted Site	76	65.10
	DHAM_HUMAN	Predicted Site	89	64.91
pdb1jk8/s4263	HA24_HUMAN	C: 1jk8C	100	64.08
pdb1xn2/s6848.	BAE1_HUMAN	F: 1xn2F	100	63.95
pdb1q9m/s466	CN4D_HUMAN	Predicted Site	67	63.92
pdb1gwx/s403	PPAS_HUMAN	433: 2-(4-{3-[1	100	63.78
model2826_42	ACE	Predicted Site	70	63.78
	GMDS HUMAN	NDP: NADPH DI	100	63.74
pdb1t2a/s5006				

Prioritize "off-targets" based on Site-Ligand Contact analysis and/or biological relevance

> Rank #1: PPAR-Gamma (Diabetes target)

 Confirmed "Off-Target" for COX-2 inhibitors

Rank #10: Estrogen Sulfotransferase (Estrogen Metabolism pathway)

- Possible "Off-Target" for COX-2 inhibitors

Virtual Target Screening Example: Statins

Example 1: Searching for off-targets to explain pleiotropic effects of statins

Similar Surface patches

Dissimilar Surface patches

Visualize Site alignments in EVE

🌙 EVE Targ	et Ana	yzer							
File Export	Filtering	Ligand Window	Help						
Sequences	Chains	Sites Binding	Modes						
		Description							
Site Name	Locus	Description	%Conf	SiteSorter Similarity ≫	%ID ♥				
)db1hw9/s41	HMDH	SIM: SIMVASTATIN	100	3 .	-				
db1rkp/s483	CN5A	Predicted Site	97	82.34	8				
db1bwc/s35	GSHR	FAD: FLAVIN-ADE	100	75.91	17				
db1ege/s38	ACDM	FAD: FLAVIN-ADE	100	71.02	8				
)db1ojd/s469	AOFB	Predicted Site	98	68.11	8				
)db1p0i/s451	CHLE	Predicted Site	98	66.74	13				
db1yet/s496	HS9A	Predicted Site	76	63.26	13				
nodel17170	CYP51	Predicted Site	98	62.98	8				
db1hy3/s412	SUOE	Predicted Site	89	62.57	8				
)db1j8h/s418	2DRA	C: 1j8hC	100	62.15	8				
db11fl/s4392	HBA_H	Predicted Site	73	61.48	8				
)db1qb0/s47	MPI2	Predicted Site	77	60.77	8				
db1myp/s44	PERM	HEM: PROTOPOR	100	60.43	8				
)db1xu7/s522	HSD11	NDP: NADPH DIH	100	60.39	8				
)db1jvd/s427	UAP1	UD1: URIDINE-DIP	100	60.17	8				
nodel21075	ALOX5	Predicted Site	72	60.00	13				
db1nnl/s446	SERB	Predicted Site	60	59.94	8				
nodel29287	TUBB5	GDP: GUANOSIN	100	59.56	8				
db1e28/s38	1B51	C: 1e28C	100	59.30	8				
db1nut/s456	NMA3	APC: DIPHOSPH	100	58.77	8				
db1gwx/s40	PPAS	Predicted Site	84	58.61	8				
)db1f83/s390	BXB_C	B: 1f83B	100	57.87	8				
nodel2028_1	TMPR	l : 178al	100	57 39	8				
db1wvb/s72	ARG1	S2C: S-2-(BORO	100	56.80	8				
Acti	Active site of human arginase								
)db1r1h/s518	1NEP	BIR: N-[3-[(1-AMI	100	55.86	8				
db1cgl/s375	MM01	C: 1cglC	100	55.84	8				

Virtual Target Screening Example: Statins

Example 2: Searching for off-targets to explain adverse effects of stating

(Cell Biol. 1999 Dec 27;147(7):1493-502.)

Supplemental Slides

EidoSert Products & Services

Target Informatics Platform (TIP™)

Comparative Visualizer (EVE[™])

In Silico Target Screening ("Target Fishing")

Example Reference: Interrogating the Druggable Genome with Structural Informatics Kevin Hambly*, Joseph Danzer, Steven Muskal, and Derek A. Debe. Molecular Diversity, 2006.

TIP Druggable Genome Coverage

Animal Model Suitability

Cathepsin S Inhibition by JNJ 10329670

Human:34nMDog:124nMMonkey:266nMBovine:411nMMouse:2364nM

R.L. Thurmond, S. Sun, C.A. Sehon et al. J. Pharmacol. Exp. Ther. 308:269-276 (2004).

Anti-Infective Spectrum

Comparison of fabH from Several Pathogens

Sequences (Chains Site:	s Site-Ligand C	Cont	tacts																			
	Description						Site Residue Conservation								Similarity Dendrogram								
Site Name	Locus	Description		SiteSorter Similarity ≫	%ID ≫																		10000000
pdb1hnj/s4162	FABH_ECOLI	MLC: MALON		-	-	. <u>D</u> TS	.w	. RI	.c	R <mark>G</mark>	.I <mark>I</mark> F	.L	. <mark>M</mark> .	GN.	VF	. A .	ь.	H. <mark>A</mark>	N.R.	I.N	. <mark>FG</mark>		
model147283	FABH_SALTY	MLC: MALON		138.07	96	ETS	W	RI	c c	RG	IIF	г	М	GN	VF	A	L	на	N R.	I N	FG		
model147282	FABH_SALTI	MLC: MALON		139.82	96	ETS	W	RI	c c	RG	IIF	г	М	GN	VF	A	L	на	N R.	I N	FG		
model147285	FABH_SHIFL	MLC: MALON		140.52	100	DTS	W	RI	c c	RG	IIF	г	М	GN	VF	A	L	на	N R.	I N	FG		
model147305	FABH_YERPE	MLC: MALON		141.24	96	DTS	W	RI	c c	RG	ILF	г	М	GN	VF	A	L	на	N R.	I N	FG		
model147254	FABH_HELPJ	MLC: MALON		140.76	96	DTS	W	RI	c c	RG	ILF	L	м	GN	VF	A	L	нА	N R.	I N	FG	l — h	
model147239	FABH_CHLPN	MLC: MALON		136.96	82	DTS	W	RI	c c	RN	VLF	г	м	GK	VF	A	М	нА	N R.	I N	FG		
model147252	FABH_HAEIN	MLC: MALON		137.27	82	DTS	W	RS	; c	RS	VLF	г	м	GN	TF	A	г	на	N R.	I N	FG		
			00000		0000000	4 3333	1000		00000			1000		00000	00000		0000	-	000		•		-

For broad spectrum inhibition, avoid interactions with non-conserved regions in *C. pneumonia* fabH

Visualize and Overlay

Druggability and Selectivity Analysis

MMP Substrate Site Similarity

Sequences	Chains Site	s Site-Ligar	nd Conta	cts			
		Description				Site Residue Conservation Similarity Dend	rogram
				SiteSorter			
Site Name	Locus	Description	%Conf	Similarity 🕸	%ID ≫		
pdb1sIn/s48	MM03_HUMAN	INH: N-(R-C	100	-	-	.GNVLAHA.E.T.LV.HE.H.FH.AL.YPLYHS	
model25148	MM12_HUMAN	HTA: N-[3-(100	94.98	63	gGILAHA e T LT HE H gH av FPTYky	
model11126	MM15_HUMAN	HTA: N-[3-(100	89.78	63	gGFLAHA e N LV HE H eH ai APFYqw	
pdb1mmq/s4	MM07_HUMAN	RRS: N4-HY	100	101.42	63	GNTLAHA e I YA HE H GH av YPTYgn	
model28047	MM20_HUMAN	HTA: N-[3-(100	94.03	63	rGTLAHA e F TV HE H aH al YPTYky	
pdb2tcl/s492	MM01_HUMAN	RO4: [[1-[N	100	96.38	67	GGNLAHA E Y RV HE H SH al YPSYt-	
pdb1mmb/s4	MM08_HUMAN	BAT: 4-(N-H	100	98.82	67	NGILAHA e Y LV HE H AH AL YPNYAf	
model15220	MM24_HUMAN	BAT: 4-(N-H	100	98.21	63	GGFLAHA e N LV HE H eH aI APFYq-	
pdb1rm8/s48	MM16_HUMAN	BAT: 4-(N-H	100	97.33	63	GGFLAHA e N LV HE H eH aI APFYq-	
pdb1q3a/s48	MM10_HUMAN	NGH: N-ISO	100	93.65	88	gHSLAHa e t LV HE H fH aL YPLYns	
pdb1fm1/s39	MM13_HUMAN	WAY: N-HYD	100	87.43	63	sGLLAHa e y LV HE H dH aL FPIYTy	
pdb1hov/s41	MM02_HUMAN	I52: N-{4-[(1	100	101.51	63	dGLLAHA e y LV HE H eH AL APiYTy	
model14614	MM09_HUMAN	Predicted Site	61	68.88	67	dgllAha e y LV hE h dh Al ypmyrf	
model30578	MM14_HUMAN	Predicted Site	81	67.42	63	ggflaha e n LV HE h eh AI Apfyqw	
			-				

Druggability

Selectivity

Allosteric Site Opportunities

Allosteric site on p38, behind ATP site

Other kinases with same allosteric site

File Filtering Window Help

Sequences Chains Sites Site-Ligand Contacts

	Description					Site Residue Conservation	Similarity Dendrogram
				SiteSorter			
Site Name	Locus	Description	%Conf	Similarity 💝	%ID ≫		
pdb1bl6/	MK14_HUMAN	Predicted Site	84	-	-	.R.TGLR.R.LKHMKHENVIGLLD.VTHLMG.Q.R.Y.AVNE.ELK.	
model30	MK03_HUMAN	Predicted Site	67	145.31	47	r rktr q LLRFRHENVIGIRd vqDLMe Q R Y LINt DLK	
model36	PASK_HUMAN	Predicted Site	62	111.48	26	k knKE a lsrvehaNIIKvLd vmEKhg q s y ViAe TIK	
model19	FER_HUMAN	Predicted Site	78	144.42	23	v -ktS k LKQYdHPNIvkLIG IMELVs d a Y LVGE VLK	
model13	FES_HUMAN	Predicted Site	60	121.81	28	- dntL r LKQYsHPnivrLIG VMELvq d a Y lvtE VlK	
model35	MPK7_HUMAN	Predicted Site	70	117.37	21	- tghV v LksHDCpyIvqcfg AmELMg a k y lLDE qiK	
pdb1jkt/s	DAK1_HUMAN	Predicted Site	68	143.09	30	y tglQ s LKEIqHPNVITLHE ILELVA Q n Y mLld RIK	
model39	S17B_HUMAN	Predicted Site	68	126.06	23	f tgqE a LelakCPRvINLHe ILEyAg q e Y LLSS dIK	
pdb1gjo/	FGR2_HUMAN	Predicted Site	95	146.27	26	k IavT e MKmIGHKnIiNLLG IVEyAs q r Y lvtE vmK	
pdb1oec/	FGR2_HUMAN	Predicted Site	85	147.27	26	k IavT e MKMIGHKNIiNLLG IVEYAs q r y lvtE vmK	
model36	FGR3_HUMAN	Predicted Site	67	108.17	30	r ipvT e MkmIkHKnIiNLLG LvEyaa q r y lvtE vmK	
pdb1agw	FGR1_HUMAN	Predicted Site	63	146.39	30	r LvTK e MKmgkHKNIiNLLG IVeyAs q r y lVte VmK	│ <u> </u>
pdb1ksw/	SRC_HUMAN	Predicted Site	61	122.40	26	R q mkkLrHEKLvqLYa vGEYMs q s y 1VGE vCK	
pdb1k3a/	IG1R_HUMAN	Predicted Site	79	147.31	23	K peTr s MKEFNCHHVvrLLG IMELMt e D Y mvaE tVK	
pdb1irk/s	INSR_HUMAN	Predicted Site	87	151.50	23	K ieTR s MkgFTCHHVvrLLG VMELMa E D Y Mvah TVK	
model13	IRR_HUMAN	Predicted Site	88	147.67	21	q esTp s MKAFKCHHVvrLLG IMELMt e D Y mvsq tvK	
pdb1mqb	EPA2_HUMAN	Predicted Site	66	147.89	21	C keVp g MgQFSHHNIIrLEg ITEYMe g a ¥ 1VNS vcK	
model24	M3K1_HUMAN	Predicted Site	61	116.62	26	- tgtL r MshLNHpnIIrmLg fiEwMa q r ¥ lIDS r-L	
model76	KG3A_HUMAN	Predicted Site	68	160.67	23	a trEL q MRkLDHCNIVrLRY VLEYVP Q R y LVDp VLK	
model13	CYGF_HUMAN	Predicted Site	74	116.96	28	s lgDF e mkdlrheNInplLg vTEFCs d k y VvDG vLK	

DATABASE SEARCH

SiteSorter Example: ATP Sites

Overlay of ATP binding sites from completely different folds

EVE: TIP's Fully Integrated Analysis Tool EVE Target Analyzer C:\demo\PDE4_PDE5_crystal_structures.eve Eidogen-Sertanty Help | Logou File Export Filtering Ligand Window Help Searches | Projects | Uploads | Protein By PDB ID Find Sequences Chains Sites Binding Modes Protein Search | Site Search | Parameters **Binding Modes** Similarity Dendrogram ent project is CDK2 rep_cocrystal Description Contact Non-polar Polar H-bond Polar/H-bond Site Name Locus Description Similarity 🏾 EVE-2D WH.NNSY.L.DL.AI.Q.IA.VA.F.L.I.MQ.GF.AI pdb1udt/s492... CN5A ... VIA: 5-{2-ETHO... pdb1uho/s50... CN5A_... VDN: 2-{2-ETH... YH NN<u>S</u>Y L DL AI Q I<u>A</u> VA F L I MQ <u>G</u>F AI 0.67 **Protein Search** pdb1tbf/s500... CN5A_... VIA: 5-{2-ETHO... 0.61 -- L DL AI Q IA VA F L I MQ GE AI - L DL AI Q IA VA F L I MO GF AI pdb1xp0/s624... CN5A ... VDN: 2-{2-ETH... 0.63 YH ---- L -L AI Q IA VA F L I MQ -F -pdb1xoz/s627... CN5A ... CIA: 6-BENZO[... 0.41 pdb1udu/s49... CN5A_... CIA: 6-BENZO[... 0.45 -NS-L-LAIQIAVAFLIMQ-F-I pdb1xb/s636... PDE4B 211399 0.36 M DL NP Y WT IM F M - SQ PDB Protein 1kv2 (EID 307004) pdb1xlx/s636... PDE4B CIO: CILOMILA... 0.39 - M DL NP Y WT IM F M - SQ -F -I YH -- M DL NP Y WT IM F M - <u>SQ</u> -F -I ndh1xix/s636 PDE4B 239740 0.43 YH pdb1xb/s636... PDE4B 263359 0.48 YH ---- M DL NP Y WT IM F M - SQ -F -I EVE Comparative Visualizer HUMAN P38 MAP KINASE IN COMPLEX WITH BIRB 796 File Selection Render Color Arrangement Labels Modes DANSFERASE MOLED: 1: MOLECULE: P38 MAP KINASE: CHAIN: A: SYNONYM: MITOGEN ACTIVATED PROTEIN KINASE P38. MITOGEN AGMENT: TYROSINE KINASE 14: EC: 2.7.1.: ENGINEERED: YES AGMENT: TYROSINE KINASE DOMAIN (RESIDUES 671-998) L ID. 1. ORGANISM SCIENTFIC HOMO SAPIENS, ORGANISM COMMON, HUMAN, EXPRESSION, SYSTEM, ESCHERICHIA ION SYSTEM COMMON BA Site Search FIL: (1E)-1-[3-(CYCLOPEN EVE-3D 437653 Min: None Max: Family ¥ ROF: 3-(CYCLOPROPYLMETHOX ... Limit to sites w 40 Chai 1 lov mit to sites within %ID rang Min: 10 Max: 100 Max 1.0 Site Search Result 6: 6 (4-(12-(3-)000BEN Add Checked To Project Chains Chain Alignments Sites Site Alignments Site Name Locus Ligand ... Ligano Parent Index Structure Description Locus pdb1ubo(s50117 CN5A ... VDN A . . . db1xmu/s64060 PDE4B ROF 1.1.1 B96 P38 MAP KINASE MK14 HUMAN Family .A. .Z dh1ubols50117 CN58 VDN 1.1.2 Predicted P38 MAP KINASE MK14 HUMAN Homo saplens 148.037 100 0.00 Family db1yl29637105 PDE4R FR B-RAF PROTO-ONCOGENE db1ubo/s50117 CN5A ... VDN P s491882 1.1.8 Predicted SERINE/THREONINE BRAF CHICK Family 129 208 42 0.00 b1so2(s48760 CN3B ... 666 PROTEIN KINASE VDN: 2-(2-ETHOXY-5-((4-ET ... MITOGEN-ACTIVATED 117 predicted MK14 HUMAN Homo sepiens 130.281 100 0.00 Family DROTEIN KINASE 14 kinase Nek7 (EC 2.7.1.37) [7] 4536229 1.1.16 Predicted NEK7_HUMAN Family 124.031 39 0.00 imA-related protein kinas TIP Project kinase Nek9 (EC 2.7.1.37) P 3576154 1.1.14 Predicted (NimA-related protein kinas 9) (Nercc1 kinase) (NIMA-related kinase 8) (Nek8) 102 Turkes IN 101 NEK9 HUMAN Home servers Family 125.548 29 0.00 Data Mitogen-activated protein kinase kinase kinase 10 (EC 2,7,1,37) (Mixed lineage 6 364 M3KA HUMAN 120.435 48 0.00 P 4553313 1.1.22 Predicted Family inase 2) (Protein kinase MST 386529 1.1.27 Predicted MAP KINASE P38 MK14_HUMAN Family 118.461 100 0.00 1.1.30 Predicted SR PROTEIN KINASE 117.959 42 KM65_YEAST Family 0.00 Eidogen-Sertanty

EVE Comparative Visualizer Layout

Selectivity Opportunities

🤨 EVE Target Anal	EVE Target Analyzer C:\Documents and Settings\EDemo\Desktop\RSK_Others.eve										
File Filtering Li	gand Wind	low Help									
Sequences Cha	ins Sites	Binding Mode	24								
		Desc	ription				Site Residue Conservation				
Site Name		Locus	Description	%Conf	SiteSorter Similarity ♥	%ID ♥	Non-polar Polar H-bond Polar/H-bond				
model31944_413_67	75_1nxkA/s	RPS6KA1	STU: STAUROSP	100	-	-	.IGVG.C.R.A.K.E.L.I.TELMR.GE.K.SN.L.CDF				
model31271_404_67	2_1nxkA/s	RPS6KA2	STU: STAUROSP	100	120.13	96	IGVG C R A K E L I MELMR GE K SN L CDF				
model13082_411_69	33_1nxkA/s	RPS6KA3	STU: STAUROSP	100	119.19	96	IGVG C R A K E L I TELMK GE K SN L CDF				
model20597_416_68	33_1nxkA/s	RPS6KA6	STU: STAUROSP	100	114.91	92	IGVG C R A K E L I TDLMK GE K SN L CDF				
model31347_94_358	3_1phk_/s5	PSKH1	ATP: ADENOSINE	100	102.04	72	IGrg V r A K e l I MELAt ge K EN L TDf				
model23101_160_41	13_1u5rA/s	MAP2K5	ATP: ADENOSINE	100	88.48	72	LGHg V k A K e l I TEFMd gs k SN L cDf				
pdb1pme/s475760 (d	:hain_)	MK01_HUMAN	577: 4-[5-(4-FLUO	100	82.57	68	ig V s a K E L I THLMg ad K SN L Cdf				
model13207_15_291	l_1phk_/s5	PHKG1	ATP: ADENOSINE	100	101.29	68	LGrg V r A K E l I FDLMk ge K EN L TDf				
model39629_216_48	39_1phk_/s	CHEK2	ATP: ADENOSINE	100	100.36	68	LGSg V L A K E L I LELMe ge K EN L TDf				
model16037_91_357	7_1x8bA/s7	MAP3K10	824: 9-HYDROXY	100	88.02	68	igvg V r A K E F I MEYaR gA k iN L TDf				
model2856_59_323_	_1phk_/s57	. PSKH2	ATP: ADENOSINE	100	103.83	68	iGtg V r A K E l V MELAt ge K EN L TDf				
model12929_114_38	69_1phk_/s	KIAA0999	ATP: ADENOSINE	100	103.59	68	IGKg V r A K E m I TEYAs ge K EN L ADf				
model38788_29_330)_3erk_/s5	-	SB4: 4-(4-FLUOR	100	70.32	68	Igeg V s A K e l I QDLMe Td k SN L Cdf				
model27606_40_300)_1x8bA/s7	CAMK4	824: 9-HYDROXY	100	86.70	68	lgrg V r A K E L I LELVT Ge k eN L ADf				
model29051_7_269_	1s9jA/s57	МАРЗК9	ATP: ADENOSINE	100	80.79	68	IGIg V r A K q l i MEFAr gp K sN L Tdf				
model6844_109_408	3_1opjB/s5	KIAA1804	STI: 4-(4-METHYL	100	69.10	68	igag V r A K E F I LEFAr ga k sn L Tdf				
model34141_216_48	37_1qpcA/s	SRMS	ANP: PHOSPHOA	100	77.40	68	LGeg V e A K e l I TELMr gn a rn L adf				
model13288_118_47	79_3erk_/s	NLK	SB4: 4-(4-FLUOR	100	68.67	68	Igyg V s A K e l L TELMq Sl k GN L Cdf				
model23020_15_270)_1x8bA/s7	PRKAA1	824: 9-HYDROXY	100	85.19	64	Lgvg V v A K E L I MEYVS Ge k eN L ADf				
model8041_222_494	4_1qpcA/s5	. FRK	ANP: PHOSPHOA	100	77.09	64	LGsg V e A K e m I TELMr gs a rn L adf				
model2737_88_396_	_1gz8A/s53	CDC2L5	MBP: 1-[(2-AMINO	100	82.15	64	IGEG V k A K e l I FEYMd Hd k Sn L Adf				
model909_613_886_	_1wjA/s700	EPHA4	DTT: 2,3-DIHYDR	100	35.18	64	igvg V s a K E m i teyme gs a rn l sDf				
model3444_162_449	9_1phk_/s5	CAMKK2	ATP: ADENOSINE	100	96.86	64	igkg V l A K E l V FELVn gp K SN L ADf				
model575507_5_305	5_1ouyA/s6	MAP2K1	094: 1-(2,6-DICH	100	87.05	64	Lgag V k A K E L V MEHMd gS k Sn L Cdf				
model45506_949_12	211_1jklA/s	TRAD	ANP: PHOSPHOA	100	81.17	64	igrg V k A K E l I LELMd gr k EN L IDl				
pdb1s9i/s575704 (ch	iain B)	MAP2K2	ATP: ADENOSINE	100	86.04	64	LGAg V k A K e l v MEHMd gs K SN L Cdf				
model46609_10_268	3_1x8bA/s7	PRKAA2	824: 9-HYDROXY	100	84.65	64	LGvg V i A K E L I MEYVS Ge k eN L ADf				
model29050_81_371	l_1phk_/s5	MKNK2	ATP: ADENOSINE	100	97.66	64	LGEg V t A K E l L FeKMr gs K EN L CDf				
model33571_38_390)_3erk_/s5	MAPK7	SB4: 4-(4-FLUOR	100	72.82	64	Igng V s A K e l I LDLMe Sd k SN L gdf				
model13525_6_274_	_1opjB/s54	ZAK	STI: 4-(4-METHYL	100	70.62	64	Cggg V r A K E L I TEyAs gs k rn V cdf				
pdb2src/s487455 (ch	iain _)	SRC_HUMAN	ANP: PHO SPHOA	100	88.78	52	lgqg V m A K e m V TEYMs gs R AN L Adf				
						00000000					

Finds the basis for selectivity in RSK's (p90 ribosomal S6 Kinases)

M.S. Cohen, C. Zhang, K.M. Shokat, J. Taunton, Structural Bioinformatics-Based Design of Selective, Irreversible Kinase Inhibitors,

Science 308:1318-1321.

cSLiC Binding Mode Analysis

Similar to pSIFT approach developed by Jus Singh's Group At Biogen see *J. Med. Chem.* **47**, 337 (2004) & *J. Med. Chem.* **48**, 121 (2005).

۹	TIP Tar	get Analyzer /home	/derek/DOC	KING/CDK2/CDK2_CoCrystals.e	ve _OX
File Filtering Ligand V	Vindow Help				
Sequences Chains Site	s Bindina M	odes			
	Descriptio	n		Binding Modes	Similarity Dendrogram
Site Name	Locus	Description	Contact Similarity ≫		
Composite1	CDK2_HUMAN	Composite1	-	IGEGGVAKEXVFEFLHQDKKQNLADD	
pdb1h1p/s406239 (chain A)	CDK2_HUMAN	CMG: 6-0-CYCLOH	0.35	I <u>GEG</u> -VAVFEFLHQDK-QNLAD-	
pdb1gz8/s407328 (chain A)	CDK2_HUMAN	MBP: 1-[(2-AMINO	0.36	I <u>GEG</u> -VAKVFEFLHQDK-Q-LAD-	
pdb1v,w/s494196 (chain A)	CDK2_HUMAN	292: N-(3-CYCLOPR	0.34	IVAKE-VFEFLHQDKLA-D	
pdb1v,w/s494198 (chain C)	CDK2_HUMAN	292: N-(3-CYCLOPR	0.35	<mark>IVAK</mark> E- <mark>VFE</mark> F <u>LHQ</u> DKLA-D	
pdb1gij/s399286 (chain A)	CDK2_HUMAN	2PU: 1-(5-0X0-2,3,	0.40	I <u>GEG</u> -VAKVFEHVHQDT-QNLA-D	
pdb1h01/s406543 (chain A)	CDK2_HUMAN	FBL: (2S)-1-[4-((4-[(0.37	I CEC-VAXVFEFLHQDKDQNLAD-	
pdb1h01/s406544 (chain A)	CDK2_HUMAN	FAL: (2R)-1-[4-((4-[0.38	ICEC-VAXVFEFLHODK-ONLAD-	
pdb1gii/s398693 (chain A)	CDK2_HUMAN	1PU: 1-(5-0X0-2,3,	0.33	IGEG-VAKVFEHVHQDT-QNLA-D	└─────────────────────────────────────
pdb1oit/s473021 (chain A)	CDK2_HUMAN	HDT: 4-[(4-IMIDAZ	0.34	I <u>GE</u> G-VAKVF <u>EFLHQDK</u> -QNLAD-	
pdb1oir/s469541 (chain A)	CDK2_HUMAN	HDY: 1- (DIMETHYLA	0.34	I <u>GEG</u> -VAXVFEFLHQDK-QNLAD-	
pdb1fvv/s391900 (chain A)	CDK2_HUMAN	107: 4-[(7-0X0-7H	0.37	IGVAKELVFEFLHQDK-QNLAD-	
pdb1ogu/s467442 (chain A)	CDK2_HUMAN	ST8: 4-{[4-AMINO	0.34	I <u>GEG</u> -VAKVFEF <mark>LHQDK</mark> KQNLA-D	
pdb1aq1/s359732 (chain _)	CDK2_HUMAN	STU: STAUROSPORINE	0.40	IGEG-VAKVFEFLHQDQNLAD-	
pdb1e9h/s382694 (chain A)	CDK2_HUMAN	INR: 2',3-DIOXO-1,1	0.36	IGEG-VAKELVFEFLHQDK-QNLA-D	
pdb1fq1/s395543 (chain B)	CDK2_HUMAN	ATP: ADENOSINE-5'	0.38	I <u>GE</u> -GVAK-TVFEFLHQDKKQNLAD-	
pdb1b38/s362961 (chain A)	CDK2_HUMAN	ATP: ADENOSINE-5'	0.28	I <u>GE</u> -GVAKVFEFL-QDKKQNLAD-	
pdb1gy3/s403281 (chain A)	CDK2_HUMAN	ATP: ADENOSINE-5'	0.33	IGEG-VAKE-VFEFLHQDK-QNLA-D	
					▼

cSLiC: Composite Site-Ligand Contacts

cSLiC Binding Mode Analysis

Docking Analysis & Rescoring

cSLiC: CDK2 Enrichment

Dramatically enhances docking-based screening

TIP and EVE Flexibility

TIP Database

Upload new sequences (or genomes) Define and query custom binding sites Build STRUCTFAST models from multiple templates

EVE Comparative Visualizer Import your own docked ligands Import your own homology models Import your own crystal and co-crystal structures

Public data is made available to all users. Your data and calculation results stay *private*

LC-ID	KKB-ID	Structures	ABL	PDGFR	PDGFRB	JAK3	KDR	LCK	MAPK14	TEK
G2G_STI_12	2082		6.7	8	8					
900 STI 1	2083		6.1	8	8					
7MP 1N8 4	4336542	NH NH FE	0.1			7.8	9	9.5	8.7	
7MP_1N8_2	4336547	NH N CONFE				6.8	8.3	9.5	9	
7MP RAJ 3	4307626	P C NH N N					8.4			8.4

LC-ID	KKB-ID	Structures	ABL	PDGFR	PDGFRB	JAK3	KDR	LCK	MAPK14	RAF1
7MP_GIN_4	4344221	0					7.6			
242_C52_2	4360910									
<u>LI3_L11_1</u>	4198240	or of the co							7.2	
608_GIG_7	4360457									6.1
KIN BMU 4	4360452									6.1

Kinase Knowledgebase[™] (KKB[™])

eScreen QSAR Models

3D-QSAR models built from data annotated in KKB

eScreen Training Set Criteria (all data mined from KKB)

Modes of ligand interaction with biological target?

•PKC: ATP site, phosphatidyl serine site, diacyl glycerol site, substrate site •SRC: ATP site, substrate site, SH2-binding domain

Substrate for the enzyme?

•Peptide, Carbohydrate, Pyruvate, ADP, Creatine

What kind of assay was run?

• Ligands only grouped from purified enzyme assays

What is the size and shape of the ligands in the assay protocol?

• Peptides, Small molecules, Heterocycles, unnatural amino acids, peptidomimetics

Experimental assay conditions (ATP concentration 5-20 uM)

Is the information suspicious in the paper?

eScreen Enrichment of Bio-Activity Space

SAR-Based Activity Matrix

eScreen Enrichment of Bio-Activity Space

eScreen Amplified Activity Matrix

201 1111 1111 1111 1111 1111 1111 1111	200 200 200 200 200 200 200 200	111 111 111 111 111 111 111 111 111 11
2000 2000 2000 2000 2000 2000 2000 200	2010 2014 2014 2014 2015 2015 2015 2015 2015 2015 2015 2015	2014 2014 2014 2014 2014 2014 2014 2014
	1932 3 2 3 4 4 4 4 5 5 7 8 5 2 7 7 7 7 4 5 4 4 4 4 4 6 4 5 5 4 7 3 7 1 5 5 7 2 5 2 7 7 4 7 7 7 5 7 8 5 9 1 4 5 6 4 5 9 1 4 4 7 5 2 7 4 5 8 8 7	0 1 5 1 5 1 5 1 1 5 5 5 7 1 5 6 7 5 5 5 7 1 5 7
	(* 1) 5 1 3 2 5 * 5 4 3 5 2 (4) 1 * 5 2 5 7 5 5 2 5 2 5 4 5 5 7 5 1 5 5 1 5 5 7 5 7 5 7 5 7 5 7 5 7 5 	40 x + x = x = x = x = x = x = x = x = x =
PRICE, DAG as an exercise an epission as as as a star as an analy en an as as an	18 45 45 45 45 45 45 45 45 45 47 50 44 44 42 45 45 45 45 45 45 45 45 45 45 45 45 45	4 45 45 45 45 45 45 45 47 47 47 47 45 45 44 45 47 44 45 45 45 <mark>47 87 7</mark> 45 47 47 47 47 46 45 45 45 45 47 47 47 47 47 47 47 47 48 47 48 47 48 48 7 45 7 8 5 7 8 57 8 57 8 57 8 57 8 57 8 57 8 57 8
PROCED DAD 49 63 63 64 47 65 65 47 65 65 47 65 66 45 46 11 63 5 64 45 55 54 45 56 47 45 45 46 47 45 45 45 44 47 55 65 65 45 55 56 65 45 56 66 66 56 66 66 56 66 66 56 66 66 56 66 6	19 12 17 18 18 14 18 14 18 18 18 18 12 12 12 14 14 18 17 18 18 17 18 18 17 14 14 14 14 14 14 14 14 14 14 14 14 17 14 14 14 14 14 14 14 14 14 14 14 14 14	3 47 68 68 48 43 48 48 48 68 20 20 48 48 44 43 47 44 47 47 48 64 94 48 48 69 4 40 47 48 45 45 47 74 18 14 54 52 9 43 82 43 42 <mark>42 41 41</mark> 43 41 42 43 58 40 60 40 40 43 40 64 42 43 78 79 43 83 44 63 2 44 42 42 42 10 70 44 43 45 42 10 41 64 54 70 42 65 78 62 67 67
	e de la serie de la faite de la serie de la serie de la serie de la constant de la serie de la Serie de la serie de la ser	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P(x age) as a first at a second a la carrier a second a s	27 A 7 A 8 5 5 6 5 7 7 8 4 5 5 7 8 6 3 6 7 8 6 3 5 8 6 7 7 8 5 6 7 7 7 8 7 8 7 8 7 7 8 7 7 8 7 8 6 6 6 7 7 8 7 8	n e des a la santa de la composición estas de la seconda de la seconda de la seconda de la composición de la se Tel 170 es 13 es el se tra <mark>de 33 a 1</mark> 0 i 11 es 180 e 12 es el 13 <mark>es 13 e 15 e 15 e 160 de 18 e</mark> 16 e 16 e 16 e 17 e 16 e 17 e 17 e 17 e
	2 6 1 6 2 4 5 7 5 3 5 00 10 6 10 5 7 7 7 10 10 10 10 10 10 10 10 10 10 10 10 10	7 m 6 1 4 5 7 2 3 3 7 m 5 7 4 5 7 2 5 7 m 5 1 1 1 2 4 5 2 7 m 5 3 5 m 5 3 5 m 5 3 5 m 5 5 m 5 5 m 5 5 5 7 5 7 5 1 5 1 5 5 7 2 5 7 5 m 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 	2 1 1 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
CDK5_025 56/70/443/631 71/70/66/70/00 18 73/75/74/9178 77/63/66/66/65/95/8/62 11111 66 111 61/82/61/81 74 115 68 CDK5_025 75 75 75 75 75 75 75 75 75 75 75 75 75		5.1 5363628365888678468.0707261716570886728161826383627163878112666775746770736873676562673316868785
MAPKI4 72 66 73 68 77 85 66 66 4 72 68 63 72 25 54 65 50 61 80 71 82 55 67 67 76 10 10 20 65 10 63 66 46 53 66 46 75 6 50 14 72 6 60 10 10 10 10 10 10 10 10 10 10 10 10 10	186485 <mark>27 99 24 97 98 55 97</mark> 64 91 7.5 53 9 4 69 <mark>97 55</mark> 67 72 5 7 53 67 63 65 9 4 65 64 64 71 56 64 72 72 67 56 66 58 60 8	1 1 2 2 2 3 2 2 7 5 6 5 7 7 5 6 5 7 5 6 5 7 5 6 4 5 4 5 5 5 5 5 7 5 1 7 5 5 5 5 5 5 5 7 5 1 5 5 7 5 7
OSKSA ni na naveni za na naveni za naveni z	алала у була тала тала тала тала тала тала тала т	testa terentes a la constante de la constante d La constante de la constante de
	19 7 8 5 5 2 5 5 8 5 9 0 0 5 5 5 5 9 5 5 5 7 7 7 2 17 5 5 11 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5	203 84 54 51 52 51 52 55 51 65 56 52 72 54 53 55 66 72 72 51 52 54 72 52 55 72 52 55 55 55 54 55 57 55 54 55 52 54 55 55 52 54 55 55 52 54 55 55 52 54 55 55 52 54 55 55 56 55 55 55 55 55 55 55 55 55 55
	19 19 19 14 14 15 15 15 15 17 18 1 43 15 17 41 43 14 1 4 1 45 15 15 15 15 15 15 15 16 16 15 15 15 15 15 15 15 15 15 15 15 15 15 	
ALL ST 646500 63 1 43454 65 59 53 51 60 6454 64 65 53 61 61 54 6466 65 1 61 7072 6657 63 56 62 61 60 65 7 87 5 SYN 19685765 63 7 61 5576 65 7 64 56 65 7 64 56 65 1 737574 60 66 61 57 1 5676 56 66 62 566 2 566 2 57 7 57 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	89 53 53 70 66 67 <mark>58 73 50 65 67 63 67 62 80 90 56</mark> 60 75 <mark>51 40 42 46 70</mark> 43 45 43 42 41 70 65 64 60 00 00 64 86 58 59 65 19 54 53 59 59 75 59 66 77 65 67 67 75 59 69 69 69 77 70 77 70 63 59 6 74 72 70 53 67 76 77 69 73 54 54 55 5	0 11 () (5) (5) (2) (10 () (4) (5) (4) (4) (4) (5) (7) (5) (5) (4) (2) (7) (5) (7) (5) (5) (5) (5) (5) (7) (4) (4) (6) (5) (4) (6) (4) (4) (4) (4) (5) (7) (6) (6) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4
ZAP_70_500 41 42 43 44 43 42 41 41 41 42 42 44 43 41 42 42 41 42 42 43 42 42 41 41 41 48 41 40 41 43 41 1 48 44 44 42 42 44 45 41 40 40 41 40 41 40 41 40 40 41 40 10 40 45 41 42 40 40 10 10 10 10 10 10 10 10 10 10 10 10 10	42 43 43 42 47 42 48 48 <mark>48 41 41 41 41 48 48 42 42 42 42 48 48 44 41 41 41 41 48 48 48 48 48 48 48 48 48 48 48 48 48 </mark>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
EGFR 2 10 10 49 11 49 11 49 14 43 48 55 52 12 68 68 40 71 61 5 10 68 88 63 57 45 60 66 66 57 64 58 68 63 54 1 65 68 58 68 68 58 68 68 58 68 68 68 68 68 68 68 68 68 68 68 68 68	29 40 44 <mark>42 83 73 48 53 94 60 56 43 20 63 96 72 96 86</mark> 66 44 59 40 80 64 74 72 74 73 72 54 66 70 50 <mark>83 70 55 61 03 74 5</mark> 1 9 9 9 7 8 2 9 9 9 9 7 9 1 9 9 9 9 9 9 9 9 9 9 9 9 9	2 (a 47 63 62 7) 16 2 64 42 65 52 24 42 65 53 24 42 67 7072 7072 42 40 41 64 67 67 51 71 72 65 56 72 65 60 77 70 47 52 52 62 65 65 56 56 56 56 56 56 56 56 56 56 56
FORR COLORIS C	an <mark>na katara ar </mark>	2 10 <mark>74 10 14 11 74 1</mark> 2 13 14 20 17 14 70 12 14 14 14 15 17 <mark>70 72</mark> 13 14 14 16 18 17 14 14 14 14 14 15 14 14 15 15 15 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15
PDCFP8 22 9 4173 00 45 52 55 55 49 56 48 56 50 73 55 49 56 48 56 50 57 50 55 52 56 50 50 52 55 56 50 55 55 55 55 55 55 55 55 55 55 55 55	13 25 55 <mark>67 (14)(13)(19)(15</mark> 52 <mark>61</mark> 14 18 52 15 <mark>72)(10) 34 (11) 14 (17)</mark> 26 13 18 55 52 52 54 53 54 <mark>62</mark> 57 <mark>(11</mark>)(10) 74 15 16 (17) 17 20 145 14 55 11 2 15 (14) 14 16 (11) 14 (17) 14 15 16 (15) 15 14 14 16 (14) 15 15 16 (14) 15 15 17 14 44 11 15 15 (16)	9 97 92 10 7 84 49 40 10 10 10 10 12 14 5 4 50 17 6 22 23 13 5 6 12 10 2 17 4 14 45 5 4 97 14 18 45 15 53 53 54 14 17 7 5 15 16 16 14 12 15 15 15 15 15 15 15 15 15 15 15 15 15
FLT1 75 4 4 6 7 6 6 6 7 6 6 6 7 6 6 7 6 6 7 6 7 7 7 7	1979 (2019) (201	27474 8400727480727582760757592407277572747777685065767574877776767878 9 9 8 8 9 9 4 6 6 6 7 5 7 7 6 7 5 8 7 6 7 6 7 6 7 6 7 7 7 7 6 6 7 6 7 6 7
TEK <mark>A 7 MARTIN BUSA MARTIN 2010 2010 2010 2010 2010 2010 2010 201</mark>	rzjesiesies je s prant 1 m 67 m 4 ies 20 m 2 m 2 m 5 m 6 m 6 2 m 2 m 2 m 6 m 60 m 60 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m	C (4 6 2 6 1 2 2 2 6 5 6 8 4 6 2 2 1 2 1 4 6 6 7 4 6 7 7 2 2 2 1 2 2 2 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 7 7 2 2 2 2
ΜΑΡ2μ ^ν επολεγικής το χέτε για 7 το του του του του του του του του του	18 44 67 69 7 0 69 69 69 78 72 72 44 72 73 73 40 67 74 74 67 74 74 75 77 70 77 77 0 63 69 77 67 78 77 72 44 64 64 73 77 77 77 77 77 77 77 77 77 77 77 77	(17)17)67)607077160707046716070467252672)00 69696406665552169706267456724667072672745670764707076767676662666666666666 5)677469637676774695746965767677476767777776767777777777
	Ci i e co i i i i i i i i i i i i i i i i i i	
min 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 max 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0		

Example Enrichment Study - WyethABL

Example Enrichment Detail - WyethABL

Enrichment analysis for 14 "new" ABL active compounds published by Wyeth (Diane H. Boschelli,* Yanong D. Wang, Steve Johnson, Biqi Wu, Fei Ye, Ana Carolina Barrios Sosa, Jennifer M. Golas, and Frank Boschelli "7-Alkoxy-4-phenylamino-3-quinolinecarbonitriles as Dual Inhibitors of Src and Abl Kinases" J. Med. Chem. 2004, 47, 1599-1601). None used in eABL eScreen development.

Enrichment greater than 7-fold. 13 of the 14 had Observed pIC50's >= 6.0 and were termed "WyethABL active" and thrown into the SCREEN-DDRA pot of compounds previously described. 1 compound overlap (molid: 13783, SCREEN-DDRAId: 301966) between the 13 WyethABL compounds and the 26K SCREEN-DDRA set (actually denoted as a Src protein kinase inhibitor).

Several known kinase actives in SCREEN-DDRA, many of which seem to bubble to the top in a general eABL ranking. In the rank-ordered compounds, for example, several of the top compounds are noted PDGF, FGF, and SRC inhibitors. Also, no less than 45 of the top-300 in this set are classified as Antineoplastic.

10 of 13 are identified when screening through just 10% of the set and all 13 are identified before screening through 40% of the set.

eScreen Example

- Prioritized 51,000 compound library using a collection of eScreens
- Compounds screened in lung cancer cell-based assay*

~5-fold enrichment after screening 10% of the library.

*Screening data courtesy of Hakim Djaballah, Memorial Sloan-Kettering Cancer Center 3,169 of the 51,000 compounds were "active" in at least one of 5 cell-based assays.

ChIP Smart Library Generation

Novel, Tractable Compound Libraries

Guided chemistry evolution directed by family, target, prior-art Consistent with accessible synthesis methods and commercially available starting materials.

Reaction Content – Enumerated From Published Reactions

- ~1,300 journal articles from 80 journals and ~80 patents
 - Publications cover parallel, solid-phase and solution-phase methods
- ~15,000 generic reactions \rightarrow ~1.8 million products
 - Reactions with their starting materials correspond to ~2.8 million specific reactions
 - Reaction exports available in RDFile/SMIRK and buildingblocks/product molecules in SDFile/SMI formats
- Hierarchically organized chemistry content covers a variety of synthetic methodology
 - Solution phase reactions
 - Solid-phase reactions
 - Polymer-supported solution-phase reactions

Enhanced Enumeration-Ready ("ChIP-able") Reaction Content

Reaction transforms – generic reactions in SMIRKS format

- Associated incompatibility SMARTS filters ("required" and "exclude")
- Introspective reactivity filters are included in the SMIRKS representation

Example reaction types

Nucleophilic Aromatic Substitution Reactions Pd-Catalyzed Aromatic Substitutions Functional Group Transformations Amine Acylation Reactions (Amides / Carbamates) Amine Acylation Reactions (Ureas / Thioureas) Formation of Diverse Heterocyclic Systems Michael addition, cyclo-condenzation (formation of 4-quinolinones) Formation of Thioimidazoles Standard Deprotection Steps Robinson Annulation Diels-Alder Reaction (26 representations) Fisher-Indole Synthesis

Filters of reactive functionalities/undesired motifs in SMARTS

ChIP-able Nucleophilic Aromatic Substitutions

aliphatic primary or secondary amine

aromatic primary amine

aliphatic primary and secondary amine

aromatic primary amine

2-chloropyrimidine, but not 4-chloropyrimidine aliphatic primary or secondary amine

2-chloropyrimidine, but not 4-chloropyrimidine primary aromatic amine

aliphatic primary or secondary amine

aromatic primary amine

aliphatic primary or secondary amine

aromatic primary amine

amine aliphatic primary or secondary

ChIP-able Diverse Heterocycles

any 2-amino arylamide not in a ring; any carboxylic acid; excludes acylators, alkylators, nucleophiles, other acids, activated aryl halides, aryl bromides/iodides

any 2-amino arylamide not in a ring; carboxylic acid chloride, no chloroformate, carbamoyl chloride, etc.; excludes other acylators, alkylators, nucleophiles, acids, activated aryl halides, aryl bromides/iodides

any 2-amino arylamide not in a ring; carboxylic acid methyl ester, does not allow any other ester, which is too restrictive; no differentiation between different ester reactivity; excludes acylators, alkylators, nucleophiles, acids, activated aryl halides, aryl bromides/iodides

any 2-ureido aryl methyl carboxylate not in a ring; excludes, acylators, alkylators, acids, nucleophiles, activated aryl halides, aryl bromides/iodides

any 2-ureido aryl carboxylic acid not in a ring; excludes, acylators, alkylators, acids, nucleophiles, activated aryl halides, aryl bromides/iodides

any 2-hydroxyaryl-(NH)-amide, thioamide, urea, thiourea, etc.; excludes, acylators, alkylators, acids, nucleophiles, activated aryl halides, aryl bromides/iodides

any 2-mercaptoaryl-(NH)-amide, thioamide, urea, thiourea, etc.; excludes, acylators, alkylators, acids, nucleophiles, activated aryl halides, aryl bromides/iodides

any 2-aminoaryl-(NH)-amide, thioamide, urea, thiourea, etc.; not amido aryl amide; excludes, acylators, alkylators, acids, nucleophiles, activated aryl halides, aryl bromide/iodide

1,2-diamino aryl (amino-2-arylamine); carboxylic acid methyl ester, does not allow any other ester, which is too restrictive; no differentiation between different ester reactivity; exclude, nucleophiles, acids, acylators, alkylators, activated aryl halides, aryl bromide/iodide, aldehydes, other esters

1,2-diamino aryl; aldehyde; exclude, nucleophiles, acids, acylators, alkylators, activated aryl halides, aryl bromide/iodide

Leveraging Building Block Complexity

Diels-Alder

Amide Formation

Benzimidazole Formation

A landslide of interesting pharmacophores, all just one Rxn step away

Substantial One-Step Diversity

+ H.N.

+ H^{.N}

CI ·

_Br

H.N.N.Br

CI N +

Good Filtering Is Critical...

Each reaction transform is encoded with the information necessary to prevent undesirable products.

Side reactions are avoided using...

Incompatibility Filters to analyze available starting materials to exclude multiple reactive functional groups

Synthetic infeasibility is avoided using...

Introspective filters to analyze the reaction center environment to exclude reactants with groups that prevent successful synthesis, e.g. nucleophilic amine, activated aromatic chloride,...

Reactive product molecules are removed using...

<u>Global "bad-frag" filters</u> to avoid reactive functionality or undesired motifs, e.g. acylators, undesired elements/isotopes...

Filtering Example

How The Chemist Thinks

Required

1,2-diaminoaryl (amino-2-arylamine); carboxylic acid methylester

Not Allowed

nucleophiles, acids, acylators, alkylators, activated arylhalides, aryl bromide/iodide, aldehydes, any other esters (no differentiation between reactivities of different esters)

How The Computer Thinks

RXN Smirk with "introspective filter"

[N; ([N;!H0](c1[#6,#7][#6,#7][#6,#7][#6,#7][#6,#7]c1[N;!H0;!H1])[A,a]); ! ([N+]); ! (NC=,#[!#6]); ! (NC=,#[#6]); ! (IC=,10], [IC=,10], [IC

e.g. Building Block Required Filters (r7069.1, r7069.2)

c(c([NH2;v3])[a])([a])[N;!H0;!\$([N+]);!\$(NC=,#[!#6]);!\$(NC=,#[#6]);!\$(N[!#6])]

[C;\$(C(=O)O[CH3]);!\$(C(=O)(O[CH3])[!#6])]

e.g. Building Block Exclude Filters (r7069.1)

 $([N;!H0;\$(NC);!\$([N+]);!\$(NC=,#[!#6]);!\$(NC=,#[#6]);!\$(NC])) OR ([N;!H0;\$(N[N;\$(N[#6]);!\$(NC=,#[!#6])]);!\$(NC=,#[!#6])]) OR (C([NH2])=[NH]) OR ([S;\$([SH]),\$([S-])]) OR (C([NH2])=[NH]) OR ([S;\$([SH]),\$([S-])]) OR (C([NH2])=[NH]) OR ([S;\$([SH]),\$([S-])]) OR (C([NH2])=[NH]) OR ([S;\$([SH]),\$([S-])]) OR ([S;\$([SH]), \$([S-])]) OR ([S;\$([SH]), \$([S-]))) OR ([S;\$([SH]), \And([S+]))) OR ([S;\$([SH]), \And([S+]))) OR ([S;\$([S+]))) OR ([S;\$([SH]), \And([S+]))) OR ([S;\$([SH]), \And([S+]))) OR ([S;\$([SH]), \And([S+]))) OR ([S;))) OR ([S;)) OR ([S$

([S;(S(=O)[OH])]) OR ([C;(C(=O)[OH]); (C(=O)([OH])[!#6])])

([C;(C[Br,I]); (C=,#[A])]) OR ([C;(COS(=O)(=O))])

([c; (c1([CI,Br,F,I])nc[n,c][c,n][c,n]1)]) OR ([c; (c1([F,CI])c([N+](=O)[O-])cccc1), (c1([F,CI])ccc([N+](=O)[O-])cc1)]) OR ([c; (c1([F,CI])cc([N+](=O)[O-])ccc1), (c1([F,CI])ccc([N+](=O)[O-])cc1)]) OR ([c; (c1([F,CI])cc([N+](=O)[O-])cc1), (c1([F,CI])ccc([N+](=O)[O-])cc1)]) OR ([c; (c1([F,CI])cc([N+](=O)[O-])cc1), (c1([F,CI])cc1)]) OR ([c; (c1([F,CI])cc([N+](=O)[O-])cc1), (c1([F,CI])cc1))) OR ([c; (c1([F,CI])cc([N+](=O)[O-])cc1), (c1([F,CI])cc1))) OR ([c; (c1([F,CI])cc1), (c1([F,CI])cc1), (c1([F,CI])cc1))) OR ([c; (c1([F,CI])cc1))) OR ([c; (c1([F,CI])cc1))) OR ([c; (c1([F,CI])cc1), (c1([F,CI])cc1))) OR ([c; (c1([F,CI])cc1))) OR ([c; (c1([F,CI])

[c;\$(c[Br,I])]

[C; (C(=O)O); !(C(=O)(O)[!#6]); !(C(=O)O[!#6]); !(C(=O)([OH])); !(C(=O)([O-])); !(C(=O)OC=, #[!#6])]

$$\label{eq:constraint} \begin{split} & [C; !H0; \$(C=O); !\$(C(=O)[!\#6]); !\$(C(=O)=[A])] \end{split}$$

De-"Know"-vo Drug Design

Other ChIP Generated PDE-IV "Me-Too's"

ChIP – "Diversity" Example Simulation

- Start with ~ 40 generic reactions with "introspective" filters
- Generate virtual protocols by graph traversal algorithm based on compatibility of generic representations
- Enumerate virtual protocols using commercially available starting materials as input
- Eliminate structures that overlap with database TDTFile (e.g. KKB)
- Apply Lipinski and structural filters (> 90)
 - MWT, HBA/HBD, ClogP, TPSA, rotBond
 - reactive functionalities like alkylators / acylators, electrophiles, nucleophiles, etc.
 - Undesired motifs (non-standard elements, >2 halo or >1 nitro per aryl, thioesters / ureas, un-branched chains, etc.
- Excerpted set: 28K novel compounds

Example Simulation Results

Compound Novelty (ChIP sim-3 excerpt)

Excerpted ePotency & eSelectivity (sim3)

FlexiChem Excerpt (sim3)

MoleculeID

P38 ATP-Site Directed Simulation

Activity Screen: MAPK14/p38alpha Pharmacophore Model High Scoring Reaction Products: 4-Aminopyridopyrimidinones

De-"Know"-vo Design Summary

Diversity and/or focused library evolution through tractable chemistry with corresponding available building blocks

Flexible evolution direction and scoring: e.g. PFPSim, (Q)SAR, Target Structure-directed, etc.

Project-based collaboration engagements and/or several components individually licensable (e.g. ARK, Reaction Content, EVE, KKB, TIP, command line enumeration, etc.)

