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We describe a novel approach to direct the exploration of chemical space in an effort to balance synthetic
accessibility and medicinal relevancy prior to experimental work. Reaction transforms containing empirical
reactivity and compatibility information are dynamically assembled into reaction sequences (vProtocols)
utilizing commercially available starting material feedstock. These vProtocols are evolved and optimized
by a genetic algorithm, which leverages fitness functions based on predicted properties of generated molecular
products. We present the underlying concepts, methodology and initial results of this prospective approach.

INTRODUCTION

Chemical synthesis is a critical element and often a
limiting factor in the early drug discovery process of lead
identification and optimization. Retro-synthetic analysis1 is
well established to plan a target-oriented synthesis of
individual compounds or compound collections (focused
libraries). However, the large amount of readily available
chemical information makes it difficult to use retro-synthetic
analysis efficiently and thoroughly.2

There have been a number of computational approaches
to retro-synthetic analysis, including LHASA,3 which applies
a knowledge base of transforms and rules to identify strategic
bonds. The SynGen program generates an optimal synthetic
route for a target organic compound by simplification and
systematization, first of skeletal dissection, then of structure
and reaction characterization.4 Gasteiger’s WODCA2,5 identi-
fies strategic bonds based on physicochemical properties of
atoms and bonds and thermodynamic stability of intermedi-
ates. SystematiChem6 searches specific chemical reactions
to arrive at synthetic routes to a target molecule. CAESA7

estimates synthetic accessibility of target molecules based
on a knowledge base of chemical reactions and available
starting materials. CAMEO8 predicts the outcome of a
chemical reaction based on mechanistic reasoning. EROS9,10

predicts the course of chemical reactions based on important
electronic and energy effects in organic molecules and rules
for evaluating the course of elementary processes.

Although the existing computational approaches for retro-
synthetic analysis are very valuable for the analysis of
individual molecules or a compound class, they are stand-
alone programs and therefore not readily applicable for the
high-throughput analysis of large numbers of diverse struc-
tures. Moreover, retro-synthetic analysis can only be applied
with a specific idea of the target structure or target compound
class, and available retro-synthesis tools are often restricted
to the analysis of individual target structures.

In the early drug discovery stage of lead identification and
optimization it is desirable to generate multiple ensembles
of compounds that each can be accessed by a common

synthetic route and allow for rapid SAR generation and
optimization. Often the specific target scaffold structures may
not be of primary interestsprovided a relevant intellectual
property position does not yet existsand one may want to
explore all target-relevant small molecule space within the
scope of in-house expertise and/or otherwise accessible
synthetic methodologies given readily available starting
materials. From a retro-synthetic perspective it is of practical
interest to quickly identify those structures and derivatives
of a series of known or putative actives that can be rapidly
synthesized utilizing accessible chemical methodology and
available starting materials.

Here we report a novel approach to forward- and retro-
synthesis based on synthetic capabilities or known chemical
transformation types. We describe the directed forward
synthesis of novel structures with desired (predicted) proper-
ties by assembling reaction sequences from individual
chemical transformations. A genetic algorithm is utilized to
dynamically combine a set of chemical transformations
(transforms, described in more detail below), which utilize
commercially available starting materials to yield sequences
that generate likely synthesis products. Virtual synthesis
protocols or vProtocols are evolved and prioritized from
fitness functions based on predicted properties of generated
molecular products. These vProtocols represent synthesis
strategies enriched not only with the potential for synthesis
success but also with the potential to produce medicinally
relevant molecules.

METHODOLOGY: CHEMICAL TRANSFORMS AND
FILTERS

In our approach, each chemical transformation (transform)
is described and loaded with information to accommodate a
“mix-n-match” strategy. Here, in addition to the basic
instructions represented in a chemical reaction (i.e. which
atoms and bonds are rearranged, changed, added, or re-
moved), each reaction is associated with the necessary
information of chemical compatibility and/or incompatibility
for each reactant along with information of chemical reactiv-
ity of the reacting functional groups, i.e., the required (or
prohibited) reaction center environments. Each transform
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contains information to (a) select all compatible building
blocks from a pool of starting materials (e.g. commercially
available) that do not interfere with the reaction under the
conditions based on known chemical incompatibilities, (b)
select the reaction site in each building block based on
chemical reactivity required for this reaction under the
conditions, and (c) process instructions to generate the
expected reaction products from each building block com-
bination based on the chemical reaction mechanism while
leaving the reaction center environment (e.g. transform-
independent stereochemistry) in each building block un-
changed (see below for more details). Scheme 1 illustrates
the reaction-specific filtration of a building block database
by incompatibility filters to generate compatible building
block sets A and B followed by their transformation into a
product library C by a transform function T. The transform
function T beyond the processing instructions includes the
information to select the correct reaction center environment
(introspective filters) for each building block.

Using such representations, the products of a two-step
reaction sequence can be represented as a transform of the
products of another transform using three building block sets
A, B, and D as input. Both transforms T1 and T2 again
contain the compatibility/incompatibility and reactivity in-
formation characteristic for the reaction type they represent
(Scheme 2).

As an example of these filtering concepts one can look at
a nucleophilic aromatic substitution of aryl chlorides with
amines (Scheme 3).

Provided similar nucleophilicy of the amine component2
and substituents of similar electronic effect at the aryl
chlorides in the reactions (I) to (IV), the reactivity toward
nucleophilic aromatic substitution of the aryl chlorides is
2-chlorotriazine (1) > 4-chloropyrimidine (4) > 2-chloro-
pyrimidine (6) > 2-chloropyridine (8). In any given reaction/
reaction type we define chemical compatibility as a function
of reactivity as exemplified above and exclude building
blocks containing functional groups that are more reactive

under the reaction conditions and therefore prone to side
reactions, or which are otherwise known to interfere with
the reaction unfavorably. For example in reaction (II) a
2-chloro substituent (which is less reactive that the 4-chloro)
can be allowed, but in reaction (III) a more reactive 4-chloro
substituent must not be present, because it would give a side
reaction. There are many other general functional elements
that must not be present in either of the building blocks to
avoid side reactions. We define these incompatibility filters
hierarchically as super- and subfilters considering reactivity
types (nucleophilic, electrophilic, acidic, basic, etc.), func-
tional group classes (acylators, alkylators, nucleophilic
amines, activated aryl halides, etc.), and individual functional
elements of known reactivity that can be further classified
by their chemical environment. As an example, one class of
basic nucleophilies includes primary or secondary alkyl-
amines, aryl or alkyl hydrazines, unsubstituted amidine
derivatives, and nucleophilic thiol compounds (all of them
can be further subclassified). We leverage the powerful
Daylight SMARTS language11,12 to define such filters. In
this example, the incompatibility filter can be described as
shown in Figure 1.

As another example, an acylator filter includes carboxylic
acid anhydrides and derivatives, acyl halides and derivatives,
isocyanates or isothiocyanates and derivatives, and sulfinyl
or sulfonyl halides (again with potential further subclas-
sification) as shown in Figure 2.

Similarly, the reactivity of the amine component in
reactions (I) to (IV) in Scheme 3 depends on its substituents,
specifically electronic and steric effects. A primary or
secondary aromatic amine is much less reactive than an
aliphatic amine. Incompatibility filters are used to exclude
building blocks that would lead to side reactions, i.e., if there
is one or more additional equally or more nucleophilic moiety
(or other reactive groups). For this it is important to express
a filter of a specific functional group (substructure) in a single

Scheme 1.Reaction-Specific Filtering and Transformation of Building
Block A and B into a Product Library C; BB Building Blocks, BBA,
BBB Building Blocks for Reactant A, B in a Reaction A+ B f C

Scheme 2.Representation of the Products of a Two-Step Sequence as
Transform Functions of Building Block Inputsa

a See Scheme 1 for explanations of symbols.

Scheme 3.Nucleophilic Aromatic Substitution Reactions
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string so double occurrences can easily be defined and
queried as SMARTS matches. As an example, two or more
primary or secondary alkylamines are defined as shown in
Figure 3.

A definition of a double occurrence of a primary or
secondary alkylamine using an OR combination of e.g.
primary alkyl- OR secondary alkylamine would be more
difficult to process.

In addition to the definition of incompatibility of certain
more or equally reactive (or otherwise incompatible) func-
tional elements with a reaction transformation, often a
specific reaction site (reaction center) must be chosen by
the transform function. Generally a less reactive functional
group must be allowed in any building block, e.g. an
arylamine in the presence of an alkylamine. For example, if
in reaction (II) the amine component is defined as a primary
or secondary alkylamine, this information must be incorpo-
rated into the reaction transform in order to specifically select
this nucleophilic amine vs any other potential amine or amide
that could match the generic representation of the reaction.
Again, the SMIRKS language11,13 can be used for the
definition of these reaction transforms, provided we semanti-
cally and syntactically separate the reaction center atoms
from their environment. This has a number of advantages.
Generally such transformssgenerated from common reaction
drawingssmore closely transform the reactants according
to the chemical reaction mechanism disregarding restrictions
that may be intrinsic in the syntax of the original reaction

representation. Furthermore, this approach allows incorpora-
tion of additional reactivity requirements into the reaction
transforms, i.e., a more specific description of the required
reaction center environment. For example, we can again look
at reaction (II) as expressed in the SMIRKS transform shown
in Figure 4.

The reaction center atoms are explicitly defined in the
generic reactants and products, and their environments are
defined as recursive components only in the reactants to
ensure a unique match.13 All nonreaction center atoms are
generalized, and their local environments and atom properties
(like chirality, isotopic information, substitution pattern, etc.)
are transformed into the products independent from those
properties themselves.

The amine reactant (second component in the SMIRKS)
shows a number of restrictions all referring to the amine
nitrogen reaction center atom including the following: at
least one hydrogen substituent, bound to an aliphatic carbon,
not positively charged, not bound to a carbon with a double
or triple bond to a non-carbon atom (no amide, amidine, etc.),
not bound to a carbon with a double or triple bond to a carbon
atom (no enamine or ynamine), not bound to any atom that
is not carbon or hydrogen (no hydrazine or hydroxylamine
derivative, sulfonamide or derivative, etc.), and not bound
to an aromatic carbon.

To build these introspective filters it is important to define
required reactivity of a chemical substructure (e.g. functional
group) such that all information refers to a single atom that

Figure 1. SMARTS representation of some basic nucleophiles defined as amine, hydrazine, amidine, or sulfide, specifically (from left to
right): primary or secondary alkylamine (nitrogen with at least one hydrogen, not positively charged, no amide, thioamide or related, no
enamine or ynamine, not single-bound to a non-carbon atom, i.e., no sulfonamide, etc., not bound to an aromatic carbon) OR hydrazine (no
other heteroatom bound to either of the nitrogens, no hydrzide, etc.) OR amidine (nitrogen unsubstituted) OR nucleophilic sulfide (with
least one hydrogen or negatively charged, includes thio acids, etc.).

Figure 2. SMARTS representation of acylators, specifically (left to right): carboxylic acid anhydride OR acyl halide or related OR isocyanate/
isothiocyanate OR sulfinyl/sulfonyl halide.

Figure 3. SMARTS representation of two basic primary or secondary alkylamines (two dot-separated primary or secondary alkylamines
as described in component 1 of Figure 1).

Figure 4. SMIRKS representation of reaction (II) in Scheme 3; reactant component 1 represents the 4-chloropyrimidine component with
the 4-carbon as the reaction center atom, reactant 2 is an primary or secondary alkylamine as the one shown in Figure 1 with nitrogen as
the reaction center atom; nonreaction center atoms are generalized as [A,a] strings to transform their local environments and atom properties
independent from these environments/properties (see text).
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corresponds to a reaction center atom (recursive elements
in the SMARTS language facilitate this). Similarly, these
filters can be classified in super- and subcategories as long
as they refer to the same functional group atom (reaction
center atom). As examples, the filters components shown
above in Figures 1 to 4 each match a single atom within a
substructure defining the chemical environment that influ-
ences chemical reactivity.

We built a user interface, which facilitates the nonspecialist
definition of such filters in a hierarchical way. This interface
allows the build-up of super- and subfilters and facilitates
the association of incompatibility and introspective filters
with reaction transformations, either as exclusion filters or
as required functionalities.

Given a large structure-activity knowledgebase for kinase
inhibitors,14 we chose a few reaction types relevant for the
synthesis and modification of heterocyclic kinase inhibitors
and defined a number of reaction representations for each
of these classes. We defined transforms for nucleophilic
aromatic substitutions of activated aryl halides by alkyl and
arylamines including chlorotriazine, chloropyrimidine, chlo-
ro- or fluoropyridine derivatives, chloro- or fluoronitroben-
zene derivatives; amine acylation reactions, including for-
mation of carboxylic acid amides, carbamates, ureas, thioureas;
syntheses of heterocyclic scaffolds including annelated aryl
pyrimidinones, pyrimidindiones, oxazoles, thiazoles, and
imidazoles, most importantly quinazolinone-, quinazolindi-
one-, benzoxazole-, benzothiazole-, and benzimidazole de-
rivatives; generalized representations for Pd-catalyzed aryl-

amination and Suzuki coupling reactions. We also included
simple functional group transformations to utilize masked
functionalities such as aryl nitro reduction to give arylamines,
transformation of pyrimidinones and -diones and related
compounds to give the respective chloropyrimidine and
related compounds, and standard deprotection steps.

For this relatively small reaction basis-set, we defined the
most important and common functional groupssthe filters
as described aboveswhich we considered most relevant to
describe chemical compatibility and reactivity and associated
the respective incompatibility and introspective filters with
each individual reaction transform.

Beyond the filters associated with the reactions we defined
a set of global filters of undesired fragments to be excluded
in any final product and/or reactant to ensure the generation
of medicinally more relevant products. Such filters include
>50 representations of reactive functionalities and substruc-
tures including alkylators and acylators, electrophiles and
certain nucleophiles (like thiols or hydrazines)15 and >35
representations of other undesired motifs that are likely to
result in medicinally unfavorable properties including all
structures that do contain any nonstandard element, structures
with too many aryl halides or aryl nitro groups, extended
conjugated systems, crown ethers, fluororganic compounds,
etc.16 In addition we applied adjusted Lipinski constraints17,18

using slightly improved SMARTS queries for hydrogen bond
donors, acceptors, and rotatable bonds as compared to
commonly used definitions.12

Figure 5. Heat map of pairwise reaction compatibility of 2-step reaction sequences in %; 10 samples, 15 iterations. While compatibility
is based on successful processing of molecules through pairwise reaction combinations, the assessment of reaction compatibility can be
further enriched with experimental synthetic yields. Compatibility is not symmetric. Data in Figure 5 are shown as compatibility of reactions
shown asy-axis (vertical at the left side of the figure) as a function of reactions onx-axis (horizontal at the bottom of the figure); products
of reactions onx-axis feed into reactants of reactions ony-axis.
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METHODOLOGY: SURVEY OF CHEMICAL SPACE
AND GENETIC ALGORITHM

With the above introduced definition of the products E of
a two-step reaction as two transform functions of building
blocks (see Scheme 2) as E) T2[T1(BBA,BBB),BBD] one
can now describe a subset of these products by applying
additional filter functions, such as Lipinski constraints FLip

or undesired fragments FBadFragas in formula (I) below.

In addition to these descriptor and substructure filters we
applied the Sertanty eScreen (QSAR) technology19 to
prioritize compounds with likely kinase activity. These
eScreen models are based on a large number of structure-
activity data points14 using 3D pharmacophoric finger-
prints20,21and have proven significant enrichment capability
in compound prioritization/selection efforts. A similar meth-
odology was recently independently applied to protein
kinases.22

With the definitions of the reaction transforms, extensive
substructure and Lipinski-type filters and QSAR character-
ization, it was our goal to explore the chemical space defined
by the basis-set chemistries starting from commercially
available building blocks considering novelty, drug-likeness,
and predicted activity/selectivity against kinase targets.

Our initial attempt was to systematically build all possible
reaction sequences from these basis-set reaction transforms

and generate the products of these sequences using building
blocks obtained by filtering ACD23 (applying building block
compatibility filters associated with the transforms). Although
this approach generated a large number of novel structures
after Lipinski filtering and elimination of undesired structural
motifs,24 we realized that it would be unfeasible to systemati-
cally sample the chemical space defined by even a small
number of reactions with reasonable computational effort.

As an alternative to systematic exploration of this chemical
transform space, we looked for an approach to identify the
best sequences of chemical reactions leading to product
structures with desired (predicted) properties starting from
commercially available starting materials. Some reaction
sequences will naturally generate a larger number of final
products than others; e.g. aniline products obtained by
reduction of aryl nitro derivative will often be compatible
with transformations requiring arylamines as reactants. Such
sequences are likely to generate more products than reaction
sequences that require building blocks with orthogonal
functionalities (functionalities that independently react in
different chemical transformations under different reaction
conditions). As a first step to quantitatively analyze such
preferred reaction compatibility based on commercially
available starting materials, we generated a matrix of pairwise
transform compatibility scores (Figure 5). The results are
represented as a heat map in % compatibility as ratios of
successfully generated final products to expected products
(i.e. building block input obtained as products of reaction
step 1). Sampling was performed in 15 iterations with 10
randomly selected building block combinations each. The
identifiers for the individual reactions in Figure 5 and the

Figure 6. Parameters and evolution for a GA simulation against an ABL-kinase eScreen model (eABL).

ESubset) FBadFrag[FLip(E)] )
FBadFrag[FLip{T2[T1(BBA,BBB),BBD]}] (I)
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reaction representations are provided in the Supporting
Information.

To survey the chemical space defined by our reaction
transforms more efficiently with the goal of identifying the
best reaction sequences generating products with desired
properties, we applied a genetic algorithm (GA) to more
efficiently direct the exploration of synthetic possibility.25-28

The GA uses a text-based representation of reaction step
transforms and sequences (see Scheme 2) and starts with a
random population of reaction sequences of one to a defined
maximum number of reaction steps. Reaction sequences are
evaluated upon enumerating all products applying the
respective transform functions starting from prefiltered
building blocks as described above.

Generated products are filtered by Lipinski descriptors and
then by structural filters. Remaining products are scored by
predicted activity using quantitative kinase target-specific or
binary kinase ATP binding eScreen models.19 In practice,
any computational model which accepts standardized mol-
ecule file formats (e.g. MDL’s SDFile format, Daylight
SMILES/TDTFile formats, etc.) and produces a numerical
assessment of the molecules in a readily digestible format
can be leveraged in the GA-fitness function. Reaction
sequences have been optimized by crossover mutation of the
highest scoring sequences to maximize fitness. Throughout
the simulation the top performing sequences and their
generated products are captured. A detailed algorithmic
outline of the genetic algorithm is provided in the Supporting
Information. For the generation of reaction sequence popula-
tions, multiple copies of the reaction transforms are offered
andsbased on precomputed pairwise reaction compatibility
(see Figure 5)shighly effective two-step sequences are
additionally introduced as starting ‘genes’.

As an example of an initial simulation we describe the
evolution of a three-step sequence optimized against our
ABL-kinase (Abelson murine leukemia viral oncogene
homolog) eScreen model using the simulation parameters
given in Figure 6.

SIMULATION RESULTS AND DISCUSSION

As shown in Figure 6 each reaction sequence generation
produced products with a lower scoring value corresponding

to increased predicted eABL activity. Scheme 4 highlights
some products (10, 11, 12) and the respective eABL scores
of the GA-generated final reaction sequence T7069T7003-
T7036. Scheme 5 shows the reaction sequence generated by
the GA leading to these structures. Reactions 7069 to 7003
and 7003 to 7036 show relatively low compatibility in Figure
5, because only a small subset of the building blocks
compatible with the first reaction will also have a functional-
ity to react in the second transformation, etc. Nonetheless
the obtained reaction sequence emerged to the top, because

Scheme 4.Selected Products with Starting Materials of GA-Simulation Outlined in Figure 6

Scheme 5.GA-Generated Reaction Sequence To Produce Products in
Scheme 4

Scheme 6.GA-Generated Reaction Sequence T7069T7005T7049T7069
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some prospective active compounds are generated. While
the GA optimizes for a reaction sequence, thus indirectly
also a subset of building blocksswith required orthogonal
functionalitiessare selected. The aniline functionality in the
simulation products could serve as a site for further deriva-
tization, and similar the aryl bromide for some of the
products.

Scheme 6 shows a reaction sequence that emerged as result
of a similar simulation using the same parameters as before.
The average eABL score for compounds generated in this
vProtocol is 6.58 with SD) 0.67 (N ) 20), eABLmin )
5.37 and eABLmax ) 7.58. Whereas transformation 7069 and
7005 only show low compatibility, 7005 and 7049 is much
more compatible, because the 7005 secondary amine product
can be acylated by 7049 in many cases.

An example product and its commercially available
starting materials are shown in Scheme 7.

These results exemplify the concept of the directed
evolution of reaction sequences toward protocols that gener-

ate prospective active compounds using a quantitative
eScreen model.

For subsequent simulations we incorporated a binary ATP-
binding site classification pharmacophore-based model29 into
the scoring function of the GA to explore more general ATP-
binding site directed kinase inhibitors. We also allowed
simple two-step sequences. For the highest scoring vProtocols
the quantitative eScreen activities were calculated for a few
kinase targets representing members of different kinase
groups and families: PKC, CDK1, CDK4, CDK5, GSK3B,
MAPK14, ABL, CSK, EGFR, PDGFR. As a result of such
a simulation a generated 2-step protocol is shown in Scheme
8.

The eSceen scores as pIC50 values of 34 generated
compounds and selected structures (14, 15, 16) are shown
in Figure 7. Some of the compounds display predicted
activity for p38-alpha (MAPK14).

Although obtained results of our initial simulations
demonstrate the concept of the GA-enabled directed evolu-
tion of reaction sequences generating products with desired
(prospective) properties from commercially available starting
materials, the molecular structures obtained have a rather
high molecular weight. We therefore reduced the maximum
molecular weight to 450 in order to produce more favorable
structures; all other filters were unmodified. With reduced
molecular weight a similar vProtocol to T7038T7006 shown
in Scheme 8 emerged as high-scoring in the genetic
algorithm. Some of the results are shown in Table 1 below
(structures17 to 20).

Scheme 7.GA-Generated Product 13 and Starting Materials for Sequence T7069T7005T7049T7069

Scheme 8.GA-Generated vProtocol T7038T7006

Figure 7. eScreen scores and structures generated in vProtocol T7038T7006.
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For these results it should be noted that although up to
5-step sequences were considered by the GA, 2-step se-
quences emerged due to requirements of the final products
(Lipinski and structural constraints) before evaluation by the
binary classification-based scoring function of the GA.

Based on the simulation results exemplified in Figure 7
and Table 1sspecifically the suggested MAKP14 activity
of compounds14, 15, 16, 18swe calculated Tanimoto
similarity values of simulation results with known kinase
inhibitor from our database14 using Daylight fingerprints30

for structural similarity and pharmprint fingerprints21,22 for

pharmacophoric similarity. Similarity values of structure15
to three known MAPK14 inhibitors21, 22, 23 are shown in
Figure 8.

21 is an inhibitor developed by Bayer,31 22 is the well-
known Boehringer Ingelheim kinase inhibitor BIRB 796,32,33

and 23 has been developed by Astra Zeneca.34 Clearly
similarity values confirm the novelty of15 compared to21,
22, 23. Where there is some degree of structural similarity
of 15 and 21, pharmacophoric similarity is very low.
Diarylurea kinase inhibitors such as21 have been shown to
interact with an allosteric binding site of MAPK14, which

Table 1. Generated Products and Predicted eScreen Activity

Figure 8. Structural and pharmacophoric similarity of structure15 to known MAPK14 kinase inhibitors21, 22, 23.
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is spatially distinct from the ATP binding pocket.32 Phar-
macophoric dissimilarity of15 and21 is explained by the
ATP-binding-directed simulation that produced the structures
in Figure 7 and Table 1.22 was developed from SAR of
similar diaryl urea structures toward establishing additional
binding interactions with the ATP pocket32,33 and therefore
may be more similar with respect to pharmacophores. Based
on the structure of23and its activity in an ATP-competitive
assay we assume that it binds at the ATP pocket.34

In another simulation with similar parameters, we obtained
sequences of two subsequent nucleophilic aromatic substitu-
tions of 2,4-dichlorotriazine derivatives with alkyl or aryl-
amines to give the respective 2,4-diaminotriazine derivatives
(Scheme 9).

Some example diaminotriazines and their calculated
activities against the same targets are shown in Figure 9.

Triazines are a well-known class of compounds, and some
of the obtained structures show structural and pharmaco-
phoric similarity (range 0.4 to 0.7) to reported triazine kinase
inhibitors.35

The above results demonstrate that meaningful structures
can be obtained using our ATP-binding site classification
as the guiding function in GA simulations. More importantly
novel structures are obtained via accessible (predefined)
reaction chemistries from commercially available starting
materials. It is important to keep in mind that eScreen-
predicted activities should be seen as a statistical enrichment
and will not always be accurate for individual compounds.
Enrichment studies for several of our models including
MAPK14 are provided in reference 19.

Besides the forward exploration of chemical space, a
similar methodology can be applied for retro-synthetic
analysis using inverse or retro-transform functions. Com-
mercial availability in conjunction with price and number
of reaction steps can be incorporated in the scoring function
of the GA. This would allow the exploration of the most
efficient synthetic sequences leading to ensembles of pro-
vided (not just individual) compounds. We are currently
exploring the application of reverse-transforms for retro-
synthetic analysis for compound collections, which will be
reported in due course.

SUMMARY AND CONCLUSION

We present a novel approach for the exploration of
synthetically feasible small molecule chemical space from
commercially available starting materials, directed toward
medicinally relevancy, applying predictive computational
QSAR models and a number of physicochemical and
structural filters. We have developed transform functions that
facilitate synthetically meaningful processing of chemical
reactions incorporating information of chemical compatibility
and reactivity. A genetic algorithm was applied to survey
reaction sequences assembled from such transforms using
predicted properties of the generated final products as a
feedback function. As initial results, we presented and
discussed generated reaction sequences, product structures
and predicted properties for a couple of simulations. We are
currently expanding the set of transforms and will report
results of future simulations as well as retro-synthetic
applications.
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Supporting Information Available: Tables of the chemi-
cal reaction representations applied in the simulations with
brief descriptions of compatibility and flowcharts describing
the genetic algorithm. This material is available free of charge
at http://pubs.acs.org.
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