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A simple, highly extensible computational strategy to assess compound toxicity has been developed with
the premise that a compound’s toxicity can be gauged from the toxicities of structurally similar compounds.
Using a reference set of 13645 compounds with reported acute toxicity endpoint dose data (oral, rat-LD50

data normalized in mg/kg), a generic utility which assigns a compound the average toxicity of structurally
similar compounds is shown to correlate well with reported values. In a leave-one-out simulation using the
requirement that at least one structurally similar member in a “voting consortium” is present within a reference
set, the strategy demonstrates a predictive correlation (q∧2) of 0.82 with 57.3% of the compounds being
predicted. Similar leave-one-out simulations on a set of 1781 drugs demonstrate a q∧2 of 0.74 with 51.8%
of the compounds being predicted. Simulations to optimize similarity cutoff definitions, consortium member
size, and reference set size illustrate that a significant improvement in the quality and quantity of predictions
can be obtained by increasing the reference set size. Similar application of the strategy to subchronic and
chronic toxicity data should be possible given reasonably sized reference sets.

INTRODUCTION

Adverse drug reactions (ADRs) are the fifth leading cause
of death.1-3 This alarmingly high figure is at the bane of a
pharmaceutical industry that is already spending over $800
million dollars over 10-15 years to develop a single new
drug.4 And despite a tripling of R&D expenditures over the
last 10 years, failure in the R&D process remains rampant
and new chemical entity (NCE) development has stagnated.5

Numerous studies consistently cite the top three reasons
for failure and slowdown in the development of NCEs as
poor biopharmaceutical properties, lack of efficacy, and
toxicity.6-8 Given a weaker economy and an aging popula-
tion,9,10 drug developers cannot simply continue to escalate
prescription drug prices.11 To remain viable in the coming
years, pharmaceutical companies must continue to contain
R&D costs and make paramount the identification of com-
pound failures sooner in the drug discovery process.12,13

Unfortunately, all chemical substances can produce adverse
health effects at some level of exposure. In acute toxicity,
poisoning occurs after a single or short-term exposure causing
severe biological harm or death. In chronic toxicity, poison-
ous effects (e.g. heart/liver damage, reproductive disorders,
cancer, etc.) are seen after long term or repeated low level
exposures. And while toxicological properties of a drug must
be evaluated and documented in animals according to FDA
regulations (Good Laboratory Practices) before study in
humans, in which the safety of a drug is determined by
studying the acute, subchronic, and chronic toxicity in several
animal species,14 there still remains significant opportunity
to proactively gauge the likelihood of toxic outcome earlier
in the drug discovery process.

Several computational strategies exist for assessing po-
tential toxicity,15-17 many of which are commercially avail-

able: DEREK,18-20 MCASE/CASETOX/TOX,21-25 TOP-
KAT,26,27 TOXAlert/HazardExpert,28 TOXSYS,29 CSGeno-
Tox,30 OncoLogic,31 etc. These programs generally utilize
methodologies that leverage QSARs (e.g. TOPKAT), rule-
based strategies (e.g. DEREK, HazardExpert, and Onco-
Logic), inductive logic (e.g. CASETOX), and combinations
of each (e.g. MCASE). In general, each of the above
programs requires either a new release of software or a
computational expert to expand the scope of predicted
behavior, thus making the addition of new reference-sets or
rules based on newly acquired experimental data inconve-
nient or highly cumbersome. Finally, several of these
strategies suffer from high-cost, difficult batch-mode integra-
tion (e.g. stodgy and/or legacy operating system implementa-
tion), closed or limited-proprietary knowledgebase and
reference sets, and/or limited-predictive performance. Argu-
ably, these limitations offer some explanation why compu-
tational toxicity assessment has not become as mainstream
in early preclinical discovery as other computational meth-
ods32 which now appear embedded in “organizational aware-
ness and self-discipline”6 (e.g. “rule of 5”33). Given even a
coarsely predictive,readily accessibletoxicity assessment
strategy, it is expected that organizations might realize a
significant savings in time and resource provided they
routinely prioritize-out compounds of probable toxic liability
during early stage synthesis planning and compound acquisi-
tion activities.

MATERIALS AND METHODS

A starter reference set (“RefSet”) of 13645 examples of
oral, rat LD50 data was assimilated from the Registry of Toxic
Effects of Chemical Substances (RTECS) database.34 The
log of LD50 in mg/kg (pLD50) for RefSet ranges from-3.85
to 5.27 with a mean of 2.92 and standard deviation of 0.85
(Supporting Information Figure S1). A subset of 1781
examples in the reference set (“DrugSet”) was identified as
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compounds that have been studied as medicinal agents in
humans.35 Table 1 highlights the average and standard
deviations of some descriptive physiochemical properties for
each set.

Each molecule was fingerprinted using the Daylight
fingerprint toolkit39 using a fingerprint size of 2048, which
has proven useful in other applications.40 While others have
studied alternative molecular descriptors to help assess
chemical similarity,41 Daylight fingerprints can be calculated
very rapidly and often outperform many descriptors42 in
assessing chemical similarity. An emphasis on the speed of
calculation is particularly important, as a rapid, batch-based
implementation is a necessary consideration. Daylight fin-
gerprints encode all substructures in a molecule that contain
from zero to seven bonds43 in a manner that both describes
and masks the originating structure. While Daylight fingerprint-
based similarity calculation mostly leverages topological
feature, inherent atomic feature and composite atom-through-
bond feature described in these fingerprints can also help
characterize geometric and electrostatic feature. It is expected
that other “accepted” strategies that numerically characterize
chemical structure en route to computing molecular similarity
might perform comparably well or perhaps even better.

ASSESSMENT BY REFERENCE SIMILARITY

We have taken the premise that a compound’s toxicity
(e.g. pLD50) can be gauged based on the toxicities of other
structurally similar compounds. We have developed a generic
utility “RefSim” (freely available at http://www.sertanty.com/
ddd/refsim_request.html) that will attribute a property to a
query compound based on the nonweighted average of that
property across a reference set of compounds within a user-
definable similarity cutoff. Because RefSim simply utilizes
fingerprinted structures and associated numerical properties
in a reference set to compute a predicted property, it can
operate on compounds without knowing precise chemical
structure or structural class. Furthermore, its generic nature
affords the application to the study of other toxicity assess-
ments (e.g. other subchronic/chronic endpoints). RefSim
accepts a standard ASCII file format (Daylight-TDT) as input
and will produce a file with the same format enriched with
prediction values. Perhaps unlike other in silico methods to
assess toxicity, RefSim has been designed for batch-mode
implementation and can be readily integrated into most
informatics systems.

Fundamental to this strategy is the notion that “like-
behaves-like” and that a reasonably robust method to assign
compound similarity exists. Several similarity metrics have

been described in the literature.44 RefSim utilizes the
Tanimoto similarity metric but can readily accommodate
other metrics (e.g. Euclidean, Tversky, etc.). A property
prediction will be reported only if there are a minimum
number of reference-set compounds within the defined
similarity cutoff- i.e., a minimal “voting consortium” exists.
No gain was achieved by weighting properties as a function
of similarity measure, so all votes are considered equal in
the calculation of the property average. Statistical assessments
to compute leave-one-out cross-validated R∧2 correlations
(q∧2) silenced the votes of consortium members with exact
structural matches (i.e. exact string match between canonical
SMILES) to the compound in question.

EXPERIMENTAL RESULTS

In applying RefSim to the assessment of pLD50, the two
factors most dramatically effecting prediction performance
and number of predictions are the user defined similarity
cutoff and consortium size, Figures 1 and 2, respectively.
Higher similarity cutoffs result in higher predictive perfor-
mance but at the expense of the number of predictions made.
An optimal similarity cutoff of 0.75 appears reasonable to
maximize both the predictive performance and the number

Table 1. Reference Set (RefSet) and Drug Compound Subset
(DrugSet) Physiochemical Propertiesa

property RefSet DrugSet

N 13645 1781
MWT 304.1 (183.8) 367.4 (95.5)
CLOGP 2.1 (2.5) 2.9 (2.7)
QPlogS -2.9 (2.4) -3.9 (2.1)
TPSA 65.23 (70.4) 72.2 (48.3)
RotBonds 5.3 (5.5) 5.9 (4.2)

a Average and (standard deviation) for N-number of compounds,
MWT-molecular weight, CLOGP-predicted log of the octanol/water
partition coefficient,36 QPlogS-predicted aqueous solubility,37 TPSA-
calculated polar surface area,38 RotBonds-number of rotatable bonds.

Figure 1. Prediction performance with increasing similarity cutoff.
The triangles-curve (leftY-axis) shows an increase in predictive
correlation (q∧2) with an increasing Tanimoto similarity cutoff.
The squares-curve (rightY-axis) shows a concomitant decrease in
the proportion of predicted examples, given the requirement that a
voting consortium must have at least one member. All leave-one-
out simulations silenced the votes of consortium structures that
exactly matched the query structure of interest.

Figure 2. Prediction performance with increasing consortium size
(similarity cutoff 0.75). The triangles-curve (leftY-axis) shows a
general increase in predictive correlation (q∧2) with an increasing
number of members in a voting consortium. The squares-curve
(right Y-axis) shows a general decrease in the proportion of predicted
examples given the minimum consortium size. All leave-one-out
simulations silenced the votes of consortium structures that exactly
matched the query structure of interest.
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of predictions made. Increasing the number of voting
members generally results in an improvement of predictive
performance, though having more than 20 members does not

appear to add significant predictive value. In general, there
is a dramatic decrease in the proportion predicted with
increasing minimal consortium size. Even with a consortium
size of at least one member, less than 60% predictions are
possible. This is all suggestive of a still “incomplete”
reference set. Figure 3 further highlights the value of
increasing the size of a reference set, suggesting that further
increases to the reference set are likely to increase the scope
of prediction. Unlike several of the above-mentioned com-
mercially available toxicity prediction methods, RefSim can
immediately leverage new additions to reference sets, without
requiring a new version of software or having to go through
a new rules-generation and/or QSAR redevelopment proce-
dure.

Using a minimal consortium size of one and a similarity
cutoff of 0.75, a leave-one-out simulation using the RefSet
against itself demonstrated a predictive q∧2 of 0.82 with
57.3% of the compounds being predicted (Supporting
Information Figure S2). While this predictive performance
is quite good, no predictions were made for nearly half of
the compounds (i.e. 42.7%). This large not predicted propor-
tion is a result of a significant number of “singletons” or
reference set examples that share little similarity with other

Figure 3. DrugSet prediction performance with increasing refer-
ence set size. The triangles-curve (leftY-axis) shows an early, rapid
then more gradual improvement in predictive correlation (q∧2) with
increasing total RefSet size. The squares-curve (rightY-axis) shows
a rapid increase in the proportion of predicted examples with increa-
sing RefSet size. All simulations were leave-one-out with a simi-
larity cutoff of 0.75 and a minimum voting consortium size of one.

Figure 4. (A) DrugSet leave-one-out prediction performance simulation. Each of the 1781 DrugSet examples was considered in a leave-
one-out simulation using the entire set of 13645 RefSet reference examples, a similarity cutoff of 0.75 and a minimum voting consortium
of one. Predictive correlation (q∧2) was 0.74 with 923 (51.8%) of the examples meeting the minimum consortium size criteria. (B) DrugSet
prediction error distribution. For the 923 prediction examples in A, the absolute prediction error distribution indicates a fairly tight bounds
with most errors (94%) falling within(1 pLD50 units.
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examples in the set. In a leave-one-out simulation, a singleton
will have a consortium of one (itself), which would be
silenced, and thus no prediction is made. The high proportion
of singletons is again an indication that the reference set
needs significant enrichment.

The average of the absolute value of prediction error (i.e.
abs(Predicted_pLD50-Observed_pLD50)) for the RefSet

leave-one-out-simulation is 0.34 with a standard deviation
of 0.36 for the 7815 predictions made. Over 57% (4490/
7815) of the predicted compounds are within(0.2 pLD50
units of observed values, and over 95% (7463/7815) of the
predictions are within(1 pLD50 units. While it is clear the
size and coverage of RefSet stands to be improved, it is a
useful starting point.

Table 2. DrugSet Prediction Outliersa

a The reported LD50s for the query DrugSet molecules (DSMs) and for their respective maximally similar molecules in the reference set (RSMs)
show significant differences despite high Tanimoto similarity between DSM and RSM. This helps explain the fairly large absolute, signed DSM
prediction error: pLD50(pred)- pLD50(obs).
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A leave-one-out simulation with DrugSet, using RefSet
as the reference set, demonstrated a predictive q∧2 of 0.74
with 51.8% of the compounds being predicted (see Figure
4A). As before, almost half of the compounds (48.2%) did
not have a voting consortium of at least one example, and
thus no prediction could be made. Another observation that
can be made from Figure 4A is the general tendency of
DrugSet entries to have higher pLD50 values (i.e. lower acute
toxicity). This is consistent with the tendency to progress
only compounds with safer toxicity profiles and that com-
pound failures typically go unpublished and/or remain hidden
in company archives.

Figure 4B shows the distribution of prediction errors for
the DrugSet leave-one-out simulation. Nearly 68% of the
examples have a positive or zero prediction error (i.e.
predicted-observed) value with 32% of the examples having
a negative prediction error. Since less toxic compounds have
higher observed pLD50s, predominance toward a positive
prediction error might be worrisome, i.e., compounds
predicted to be less toxic may actually be more so. However,
almost 49% (451/923) of the predicted compounds are within
(0.2 pLD50 units of observed values, and over 94% (868/
923) of the predictions are within(1 pLD50 units. This level
of predictive accuracy, while not perfect, can be of consider-
able value in an early discovery setting when a researcher is
faced with a large number of synthetic possibilities and/or a
large number of compound acquisition choices. If for no
other reason than to flag compounds that might have potential
toxic liability (given high similarity to one or more com-
pounds in an ever growing knowledgebase of toxic prece-
dence), this technique should offer some level of improve-
ment over “blind faith” that a compound will be safe or that
toxicity can be ameliorated later in the development cycle.

Table 2 highlights some of the top outliers in the DrugSet
leave-one-out simulation. High structural similarity can be
seen between the DrugSet molecule and the most similar
member in the RefSet voting consortium. Of notable interest
is the difference in reported LD50s between salt forms of
benzquinamide and indomethacin. Another notable difference
in LD50 is between flunisolide and its most similar RefSet
member, where a simple H-to-Fluoro substitution results in
a dramatic decrease in toxicity. Glypinamide is also a very
dramatic outlier, with a single chloro-to-methyl substitution
resulting in a very significant decrease in toxicity. It is not
surprising these are predictive outliers, given the significant
differences in LD50 despite a high degree of observed
structural similarity. While it is not clear if any predictive
method would have faired well on these cases, it should be
noted that none of the Tanimoto-similarity values between
the DrugSet outlier and its maximally similar RefSet
consortium member in Table 2 is 1.0 (albeit Benzquinamide
is close) and all top outliers with the exception of in-
domethacin have a relatively small number of voting
consortium members. Along with increasing RefSet’s size,
improvements in structure class coverage will likely decrease
the number of predictive outliers.

SUMMARY AND CONCLUSIONS

Computational tools well-integrated into parallel preclinical
discovery programs will allow early discovery researchers
to increase their chances of arriving at more efficacious and

safer compounds, sooner and at lower cost.45,46 While a
computationally predictive technology is not likely to replace
later-stage clinical activities or early preclinical animal testing
in the short-term, even a moderately predictive computational
toxicity tool can play a significant role in helping to prune
down early synthetic opportunities, compound acquisition
choices, etc., especially when coupled with other tools to
computationally evaluate a compound’s preferred potency,
ADME-biopharmaceutical properties, and oral availability.

Detailed information generated by a toxicity eScreen can
be used by scientists to help prioritize compounds and to
avoid work on compounds that are likely to fail in safety
tests later in development. Reasonably accurate and robust
toxicity predictions can be achieved with a reference similar-
ity approach given a sizable, well-rounded reference set.
Simulations have demonstrated that an increase in reference
set size is likely to improve both the quality and quantity of
toxicity predictions and decrease predictive outliers. Other
simulations have demonstrated that small to moderate voting
consortia per compound-class may suffice to build well-
rounded reference sets, but current coverage even for known
drug molecules is still fairly inadequate. Furthermore,
because the described reference similarity technique utilizes
structural fingerprints that do not directly reveal the specifics
of any particular compound or structural class, competitive
research organizations could share information into a col-
lective pool without revealing a structural direction of their
ongoing discovery efforts.

We would like to encourage the exchange of acute,
subchronic, and chronic toxicity information throughout the
pharmaceutical industry. In addition to making the RefSim
utility freely available, we will commit to establishing a
framework for organizations to submit and access encoded
structure-fingerprint/toxicity-property information. Provided
a critical mass of industrial participation, we hope to facilitate
a cooperative assimilation of toxicity data with the expecta-
tion that all participants will benefit from improved toxicity
models.
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