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ABSTRACT
Motivation: Background distribution statistics for profile-based
sequence alignment algorithms cannot be calculated analytically, and
hence such algorithms must resort to measuring the significance of
an alignment score by assessing its location among a distribution of
background alignment scores. The Gumbel parameters that describe
this background distribution are usually pre-computed for a limited
number of scoring systems, gap schemes, and sequence lengths and
compositions. The use of such look-ups is known to introduce errors,
which compromise the significance assessment of a remote homology
relationship. One solution is to estimate the background distribution for
each pair of interest by generating a large number of sequence shuffles
and use the distribution of their scores to approximate the parameters
of the underlying extreme value distribution. This is computationally
very expensive, as a large number of shuffles are needed to precisely
estimate the score statistics.
Results: Convergent Island Statistics (CIS) is a computationally effi-
cient solution to the problem of calculating the Gumbel distribution
parameters for an arbitrary pair of sequences and an arbitrary set
of gap and scoring schemes. The basic idea behind our method is
to recognize the lack of similarity for any pair of sequences early in
the shuffling process and thus save on the search time. The method is
particularly useful in the context of profile–profile alignment algorithms
where the normalization of alignment scores has traditionally been a
challenging task.
Contact: aleksandar@eidogen.com
Supplementary information: http://www.eidogen-sertanty.com/
Documents/convergent_island_stats_sup.pdf

INTRODUCTION
Sequence homology detection algorithms employ rare event statist-
ical approaches to estimate the significance of an alignment between
two gene or protein sequences. For ungapped local alignments and
in the asymptotic limit of long sequences, it is well established that
the alignment scores follow an extreme value distribution described
by two parameters λ and K (Altschul et al., 1990, 1997; Dembo
et al., 1994). For profile-based algorithms, with or without gaps, it
has been conjectured that the score distribution is still of the Gumbel
form. However, estimating alignment score significance based on
a single or a finite set of Gumbel parameters can introduce errors.
In practice λ may vary by >10% from one pair of sequences to
another, due to variations in sequence composition (Altschul et al.,
2001). On the other hand, for marginally significant alignments,
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even a 4% error in λ leads to an error in E-value greater than a
factor of 2.7 (Altschul et al., 2001). Various approaches to address-
ing sequence specific features during the score normalization have
been used in lieu of a rigorous theory. In PSI-BLAST, lengths are
dealt with using edge-effect correction (Altschul and Gish, 1996) and
composition-based effects are dealt with using composition-based
statistics (Schaffer et al., 2001). There are other efficient methods
not implemented in BLAST (Mott and Tribe, 1999; Mott, 2000) that
estimate length- and composition-dependent statistical parameters
without further simulation.

In contrast to profile-sequence methods, profile–profile alignment
algorithms still lack a fast and accurate assessment of the score stat-
istics. This is in particular true for algorithms that use structural
information, position specific gaps and various other constraints in
the alignment process. Accurate score normalization in these meth-
ods is very important because there is plenty of evidence suggesting
that profile–profile algorithms can recognize some extremely distant
sequence relationships. In the last CASP experiment, for example,
profile–profile methods were among the top performers across all
categories.

Many of the existing profile–profile alignment methods use
Z-score statistics to measure the score significance (Rychlewski
et al., 2000; Ginalski et al., 2003). Other methods normalize the
alignment scores by assessing their locations in a fixed Gumbel dis-
tribution. The first approach is limited in the number of shuffles that
can be employed in order to process the database in a timely fash-
ion. It also makes the wrong assumption about the Gaussian form of
the underlying score distribution. The second technique is extremely
fast, but it does not address the profiles’ lengths and the compos-
ition bias. COMPASS (Sadreyev and Grishin, 2003) generalizes
the PSI-BLAST approach in computing alignment score signific-
ance. However, the method is designed to work with the COMPASS
alignment algorithm, i.e. for its specific scoring function and gap
penalties.

Recently, methods that use scores for local alignment ‘islands’
have been described (Olsen et al., 1999; Altschul et al., 2001). The
so-called ‘island method’ overcomes many of the bottlenecks of the
earlier methods. But, despite its favorable properties, it alone still
does not allow for quick estimates of λ and K in the context of a
large database search. In the island method, independent of how
‘similar’ sequences are, they are repeatedly shuffled and aligned in
order to produce a large number of island scores needed to derive the
two Gumbel parameters.

Our method, Convergent Island Statistics (CIS), builds upon the
island method, but is able to recognize the lack of sequence similarity
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early in the shuffling process and thus save on the search time.
Full blown shuffling is needed only when there is enough evidence
that the sequences are related. Convergent Island Statistics has the
following properties:

(1) It is reasonably fast. Profile–profile alignment algorithms
incorporating CIS are able to process standard databases like
PFAM or PDB in real time.

(2) Since it is based on sequence shuffles, the estimation of distri-
bution parameters in CIS takes account of sequence (profile)
lengths and compositions.

(3) CIS provides an explicit, analytical tradeoff between the
algorithm’s speed and sensitivity.

(4) It uses no lookup tables and contains no parameters to
optimize.

(5) It estimates score statistics ‘on-the-fly’ and therefore it can be
readily applied to a broad class of local alignment algorithms,
without pre-processing of the data of any kind.

Background
Statistics of sequence alignment scores have been extensively studied
(Dembo et al., 1994; Altschul and Gish, 1996; Mott and Tribe, 1999;
Mott, 2000; Karlin and Altschul, 1990, 1993; Pearson, 1998; Collins
et al., 1988; Mott, 1992; Waterman and Vingron, 1994a,b). For
sequence–sequence alignments lacking gaps, the expected number
of locally optimal sub-alignments with a score of at least x is
approximately Poisson distributed with mean value E,

E = Kmne−λx (1)

In Equation (1), m and n are the lengths of the sequences, K is the nat-
ural scale for the size of the search space and λ is the scale parameter
for the scoring system. Equation (1) implies that the probability of
finding exactly k alignments with score ≥ x is

ek ln E−E/k! (2)

Hence, the probability of finding at least one such alignment is

P(S ≥ x) = 1 − e−E (3)

The last quantity is called the P -value of the score x, and is the meas-
ure of statistical significance of x. From now on, we will denote the
P -value of the score x by p(x|λ, K) in order to specify the underly-
ing distribution parameters. Note that the accurate estimates of λ are
much more important than those of K , since λ enters Equation (1)
exponentially.

Island Statistics
Recently, Olsen et al. (1999) proposed a computationally efficient
method for determining λ and K using scores for local alignment
‘islands’. The value of each cell in a Smith–Waterman matrix cor-
responds to the highest scoring local alignment that ends at that cell.
The local alignment starts at a so-called anchor cell, and an island is
defined to be the set of all cells that have the same anchor. The score
of an island is the maximum score of the cells it contains. A simple
modification of the Smith–Waterman algorithm involving a small
extra computation per cell allows one to keep track of the anchor
cells, as well as the island end-points and their scores. Since island

scores are scores of distinct sub-optimal alignments, Equation (1)
describes well the number of islands with a score of at least x, and is
increasingly accurate for larger values of x. Thus, the precise estim-
ates of λ and K may be obtained by considering those islands with
scores of at least some threshold value c. For the case of discrete
alignment scores, the maximum likelihood estimate of λ is

λ̂ = ln

(
1 + 1

Sc

)
(4)

where

Sc = 1

N

∑
i∈Ic

(S(i) − c) (5)

and where S(i) is the score of the ith island, Ic = {i|S(i) ≥ c} and
N = |Ic| (Altschul et al., 2001).
In the case of continuous alignment scores,

λ̂ = 1

Sc

(6)

The maximum likelihood estimate of K is

K̂ = Neλ̂cc

A
(7)

where A is the aggregate search area of the island search space
(Altschul et al., 2001). For example, if two sequences of lengths
m and n were compared once, A = mn. If P such comparisons were
made then A = Pmn (Altschul et al., 2001). For the sake of simpli-
city, hereafter we will focus on continuous alignment scores and use
λ̂ = 1/Sc.

SYSTEMS AND METHODS
It has been shown that the island method has a speed advantage over the direct
shuffling method. For recommended asymptotic parameter estimation, the
speed advantage of the island method even approaches an order of magnitude
(Altschul et al., 2001). Yet, in the context of a database search it is still too
time-consuming to re-estimate λ and K for each sequence pair of potential
interest. One accurate estimate of the two parameters would require as much
time as searching a typical current database with a standard heuristic method.

Convergent Island Statistics is capable of quickly recognizing significant
matches and estimating the score distribution only in the case where there is
evidence that the two sequences are related. Although our method is applic-
able to a more general setting, for the sake of simplicity we will only describe
the version that is an enhancement of the island statistics method. The main
idea is based upon the following two observations:

(1) If λ1 ≤ λ2 and K1 ≤ K2 then p(x|λ2, K1) ≤ p(x|λ1, K2).

(2) The distribution of λ̂/λ is approximately normal with mean 1 and
standard deviation 1/

√
N . The distribution of K̂/K is approximately

normal with mean 1 and standard deviation 1/
√

KNmne−λc (see the
Supplementary material).

Note that observation 1 implies that if an alignment score is not statistically
significant with respect to the extreme value distribution EVDλ2,K1 , then it
is not statistically significant with respect to EVDλ1,K2 for any λ1 ≤ λ2 and
K1 ≤ K2. On the other hand, observation 2 allows one to estimate and
control the probability that the true λ is within an interval that depends on
sampled λ̂ and the number of islands used to estimate λ̂. The same argument
can be applied to the other parameter K . Observation 2 further implies that
the confidence intervals corresponding to the j th multiple of the standard
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deviation σ are respectively

1 − jσ <
λ̂

λ
< 1 + jσ (8)

and

1 − jσ <
K̂

K
< 1 + jσ (9)

These inequalities are equivalent to

λ(j)−N < λ < λ(j)+N (10)

where

λ(j)−N = λ̂

1 + j/
√

N
and λ(j)+N = λ̂

1 − j/
√

N

and

K(λ, c)−N < K < K(λ, c)+N (11)

where

K(λ, c)−N = K̂ − jeλc

√
Nmn

and K(λ, c)+N = K̂ + jeλc

√
Nmn

ALGORITHM
Suppose that we are given a sequence Sq and we want to search
a (possibly large) database {S1

t , . . . , SR
t } for sequences similar to

Sq . Assume that we are only interested in the matches with the
P -value below a certain cutoff p0 and we want to precisely estim-
ate the P -value for every such match. For each target sequence, our
algorithm is a series of steps s1, . . . , sk , where each step si may be
described as follows.

Shuffle the sequences (or columns of both sequential profiles) as
many times as needed to generate Ni islands. Note that shuffling
randomizes the order of the symbols in a sequence without changing
the sequence’s composition. Calculate λ(j)+Ni

and K(λ(j)+Ni
)−Ni

. If
p(x|λ(j)+Ni

, K(λ(j)+Ni
)−Ni

) > p0 (according to observation 1) dis-
card the score as insignificant and proceed to the next sequence.
Otherwise, go to the next step. If reached, the last step k ends with
computing the final P -value from the distribution with parameters λ̂

and K̂ which are estimated from Nk islands.
The pseudo-code for the CIS algorithm is given below.

for r := 1 to R do
for i := 1 to k do

while(number of islands < Ni)
shuffle Sq

shuffle Sr
t

align shuffled sequences and extract more islands;
end-while
compute λ(j)+Ni

, and K(λ(j)+Ni
)−Ni

Pval :=p(x| λ (j)+Ni
, K(λ (j)+Ni

)−Ni
)

if Pval > p0 then
print ‘No similarity found.’
exit inner for-loop (go to the next sequence)

else if i == k
print alignment between Sq and Sr

t

print Pval.
end-if

end-for
end-for

The number of islands Ni in our algorithm increases at each
step (N1 < · · · < Nk). This allows for more precise estimates of the
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Fig. 1. The algorithm’s accuracy as a function of j (#STDEV) and
k (#STEPS).

parameters compared to the estimates in the previous step, but it also
requires more CPU time.

Analysis
The algorithm’s accuracy is defined as the percentage of true pos-
itives (i.e. those found by the regular island method to have the
P -value <p0) that are not discarded in any of the algorithm’s steps.
The accuracy depends on both j (the number of standard deviations
above the mean in the distributions of λ̂/λ and K̂/K) and k (the
number of algorithm steps). For example, j = 3 corresponds to
∼99.86% one-tailed confidence interval in the Gaussian distribu-
tion, which means that Equations (8) and (9) are each true ∼99.86%
of the time. But, since both λ̂ and K̂ are required to pass the tests,
assuming (wrongly but conservatively) independence of λ̂ and K̂ ,
the confidence drops to about 99.7% (in other words, the chances
of keeping a significant hit in any pass of the algorithm are at least
99.7%). Also, λ̂ and K̂ have to pass the test k separate times. Assum-
ing (again wrongly but conservatively) independence of the k tests,
the confidence decreases accordingly. For j = 3 and k = 3, the
confidence interval is at least 99.1%. Figure 1 shows the relationship
between j , k and the accuracy of the parameter estimates.

In the case of BLOSUM62 substitution matrix with affine gap
scores of −(11 + k) for gaps of length k, the best cutoff score for
saving the alignment islands is around c = 28 (Altschul et al., 2001).
In general, for an arbitrary alignment algorithm (including profile-
based methods), a cutoff score of c = const ∗ m can be used, where m

is the largest positive entry of the scoring matrix (Olsen et al., 1999).
As in the regular island method, the estimates of statistical para-

meters in CIS can be made free of edge-effect bias by extending the
dynamic programming matrix and considering only those islands
that are anchored within the central region of the matrix (Altschul
et al., 2001).

To test the effectiveness of our method, we have implemented
a simple version of the Smith–Waterman algorithm and compared
the performance of CIS and the regular island method on Lindahl’s
dataset (Lindahl and Elofssons, 2000). The algorithm uses the
BLOSUM62 substitution matrix in conjunction with affine gap
scores of −(11 + k) for gaps of length k, and the island threshold
score of c = 28. To reduce edge-effects, each dynamic program-
ming matrix is surrounded by a border of width 100, filled with
the randomly chosen scores from the central area of the matrix
(Altschul et al., 2001). For the sake of simplicity and consistency, we
assume continuous alignment scores. However, the results should be
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Table 1. Speed comparison between CIS and the regular island method using
P -value cutoff p0 = 2e − 6 (corresponding to E-value of ∼1.0)

j k Number of islands Speed ratio Accuracy
1st pass 2nd pass 3rd pass (CIS: island m)

3 2 100 10 000 87.8 99.46%
4 2 100 10 000 84.2 99.99%
3 3 100 400 10 000 92.6 99.19%
4 3 100 400 10 000 92.0 99.98%
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Fig. 2. The speed advantage of CIS over the island method, as a function
of E-value threshold E0. The remaining parameters are set to j = 4, k = 3
(100, 400 and 10 000 islands).

comparable to those obtained with discrete alignment scores, as the
two distributions of ML estimates are very similar for this algorithm’s
setting (Altschul et al., 2001). The standard error of λ̂/λ in case of
continuous scores is 1/

√
N and the standard error for discrete scores

is (exp(λ)−1)/λ
√

exp(λ)
√

N ∼ 1.003/
√

N (Altschul et al., 2001).
In our experiment, the island method is set to generate at least 10 000
islands for each pair of sequences [corresponding to standard error
in λ̂/λ of about 1% (Altschul et al., 2001)]. The numbers of islands
assigned to various steps of the CIS method are 100, 400 and 10 000,
corresponding to standard errors of about 10, 5 and 1%, respectively.
The P -value cutoff of p0 = 2e − 6 is chosen to correspond to the
E-value cutoff of E0 ≈ 1, which is often the default value in data-
base search algorithms. As seen in Table 1, the CIS method is, on
average, about 90 times faster then the regular island method.

The actual speed advantage of our method also depends on the
P -value cutoff p0 set in the search. In other words, the speed advant-
age is higher if one is not interested in weak matches and it is
increasing as the P -value cutoff is lowered. Figure 2 shows the
speed advantage of CIS over the regular island method using various
threshold values for E0.

It should be noted that the speed will not vary much as the sig-
nificance threshold is reduced if the database contains many true
positives. For example, if a query belongs to an abundantly repres-
ented superfamily, CIS will still be slow, as every database hit will
be thoroughly evaluated by all steps of the algorithm. Also, in its
present form, the algorithm creates a completely new set of islands
in each step (i.e. islands from step si are not used in step si+1). Thus,
an additional speed gain may be obtained by saving the islands from
each pass and using them in subsequent steps of the algorithm.

It is easy to see that the algorithm’s speed can be further increased
by filtering out the database hits based on a background distribution

Table 2. Speed comparison between the regular CIS method and the same
method enhanced with filtering of the database hits based on conservative
parameter estimatesa

λ K Change in Change in Speed ratio
λ (%) K (%) (CIS + filtering: CIS)

0.27501 0.04074 +3% −3% 13.65
0.28035 0.03990 +5% −5% 12.14
0.29370 0.03780 +10% −10% 9.02

aThe true values for λ and K are assumed to be λ = 0.267 and K = 0.042 (Altschul
et al., 2001). The same parameter setting as in the first example is used.

defined by some fixed, pre-computed, conservative estimates of the
parameters λ and K . Table 2 shows the speed comparison between
the CIS method described above and the same method applied in
conjunction with the filtering of the database hits based on various
conservative estimates of λ and K . However, despite the fact that
the latter version of CIS has an additional speed advantage over
the regular CIS method, this particular approach does not provide
‘on-the-fly’ statistics, as an additional effort is needed to pre-compute
the estimates of the two distribution parameters.

DISCUSSION AND CONCLUSION
In the case of sequence–sequence alignments that are not allowed
to contain gaps, the parameters of the score distribution may be
calculated analytically. Although no rigorous analytical theory has
been developed for profile-based method, the score normalization
problem in profile-sequence methods has been extensively studied
and efficiently addressed. Profile–profile alignment algorithms still
lack fast and accurate score statistics. To account for the rich profile
content, structural constraints and different gap models, one has to
employ a brute force method of doing extensive random shuffles for
every pair of profiles of interest. However, the sequence databases
have grown in size enormously over the last few years, making the
brute force approach computationally prohibitive.

The method we propose is able to recognize the lack of similarity
for any pair of sequences early in the shuffling process and thus save
on the search time. Any given sequence will typically have a small
number of significant hits in a representative, large database, so the
vast percentage of comparisons will be computed very efficiently. On
the other hand, if the sequences are related, our method approaches
the complexity of the brute force method of doing extensive random
shuffles and therefore is able to recognize and precisely estimate the
statistics of every such pair.

Convergent Island Statistics can be readily applied to any align-
ment algorithm whose background scores follow an extreme value
distribution. The method contains no parameters to optimize and
there is no need for fitting the data of any kind. The CIS method was
particularly useful to our group in the preparation for the CASP6
structure prediction experiments (http://predictioncenter.llnl.gov).
For CASP6 we needed to test the performance of different profile–
profile search strategies by frequently changing the method’s
parameters, such as gap penalties, scoring schemes and weights
on various other input data. Having a method for computing
‘on-the-fly’ statistics proved to be very convenient. It would be
almost impossible to test and validate various theoretical and
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heuristic approaches to database search if we had to re-estimate
the score statistics each time we switch from one algorithm’s set-
ting to another. All three of our automated servers in CASP6 and
CAFASP4 (http://www.cs.bgu.ac.il/∼dfischer/CAFASP4/alev.html)
experiments, namely Eidogen-EXPM, Eidogen-BNMX and Eidogen-
SFST, used CIS to estimate the significance of database hits.
However, the detailed description of the algorithms as well as their
CASP and CAFASP performance is beyond the scope of this paper
and will be published elsewhere.
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