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ABSTRACT STRUCTFAST is a novel profile—
profile alignment algorithm capable of detecting
weak similarities between protein sequences. The
increased sensitivity and accuracy of the STRUCT-
FAST method are achieved through several unique
features. First, the algorithm utilizes a novel dy-
namic programming engine capable of incorporat-
ing important information from a structural family
directly into the alignment process. Second, the
algorithm employs a rigorous analytical formula for
profile–profile scoring to overcome the limitations
of ad hoc scoring functions that require adjustable
parameter training. Third, the algorithm employs
Convergent Island Statistics (CIS) to compute the
statistical significance of alignment scores indepen-
dently for each pair of sequences. STRUCTFAST
routinely produces alignments that meet or exceed
the quality obtained by an expert human homology
modeler, as evidenced by its performance in the
latest CAFASP4 and CASP6 blind prediction bench-
mark experiments. Proteins 2006;64:960–967.
© 2006 Wiley-Liss, Inc.
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INTRODUCTION

There are many different techniques for comparing and
aligning protein sequences. Over the years, dynamic pro-
gramming algorithms have dominated the field of protein
sequence comparison. The widely applied BLAST1 and
FASTA2 algorithms utilize dynamic programming in con-
junction with a sequence–sequence scoring function that
evaluates the similarities between the amino acids of the
query and template sequence. The well-known PSI-
BLAST3 algorithm is an example of a sequence–profile
method that replaces the query sequence with a profile of
sequences from the query protein family. PSI-BLAST
iteratively collects sequences from a sequence database to
build a position-specific scoring matrix (PSSM). The PSSM
is then used to search the sequence database for new
homologs, which are used to construct a new position
specific score matrix. This process is repeated until no new
sequences are found. The hidden Markov model-based
approaches, such as SAMT024 or HMMER use an explicit

probabilistic model (HMM) in place of a position specific
score matrix.

The new generation of profile–profile alignment meth-
ods utilizes multiple sequence alignment profiles in place
of the query and template sequence.5,6 Profile–profile
algorithms enjoy additional enhancements in sensitivity,
often recognizing sequences that share less than 15%
identity, as evidenced by large-scale benchmarking experi-
ments such as LiveBench,7 CAFASP,8 and CASP.9–11

Despite the success of profile–profile approaches, many
aspects of their development remain ad hoc. For example,
most of the existing profile–profile algorithms fail to
provide a rigorous, probabilistic treatment for the column–
column matching (as opposed to sequence–profile methods
such as PSI-BLAST and HMMER, where the residue-
column scores are treated as log-odd scores). The lack of a
rigorous framework is universally true for profile–profile
methods that incorporate other terms in the scoring func-
tion, such as position specific gap penalties and secondary
structure information. To work well across the protein
universe, these methods implement various ad hoc adjust-
ments when scoring pairs of profiles, such as the normaliza-
tion of the score matrix and score shifts.5,6,12 This natu-
rally introduces a performance bias toward the test sets
used during parameter adjustment.

Estimating alignment score significance in profile–
profile methods is also a challenging task. A rigorous
measure of protein sequence similarity should reflect the
difference between the quality of the best alignment of the
two sequences and the quality of the best alignment
between random sequences of the same lengths and compo-
sitions. For ungapped local sequence–sequence align-
ments in the asymptotic limit of long sequences, it is well
established that the alignment scores follow an extreme
value distribution described by two parameters � and
K.13,14 For profile-based algorithms, with or without gaps,
it has been conjectured that the score distribution is still of
the Gumbel form. PSI-BLAST rescales the position specific
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scoring matrix (PSSM) so that the scale of the raw scores
corresponds to that of the standard substitution matrix.
The assumption is that the random PSI-BLAST alignment
scores, obtained by using a rescaled PSSM, will follow the
Extreme Value Distribution of gapped sequence–sequence
alignment scores. Thus, PSI-BLAST is able to quickly and
precisely estimate the score statistics, without further
random simulations. Due to the increased algorithm com-
plexity, score normalization in profile–profile methods is a
much more challenging problem. This is particularly true
for algorithms that incorporate various constraints into
the alignment process, such as secondary structure or
complex gap treatments. For this reason, some profile–
profile alignment methods use Z-score statistics to mea-
sure the alignment score significance.5,12 COMPASS15

provides a nice, PSI-BLAST-like statistical approach to
computing E-values. However, the applications of this
technique are limited to the specific scoring system used in
the COMPASS algorithm.

In this article we introduce STRUCTFAST (STructure
Realization Utilizing Cogent Tips From Aligned Struc-
tural Templates), a novel, fully automated, profile–profile
database search algorithm. The query sequence profiles in
STRUCTFAST are generated with a modified version of
the PSI-BLAST algorithm. A database of profiles for
template representatives from the Protein Data Bank
(PDB) are generated in a similar manner, but are aug-
mented with information from structure–structure align-
ments derived from the template protein’s structural
family. A query profile is then aligned and scored against
the library of structural profile templates and the align-
ments are ranked by the significance of their scores, as
determined by the previously published Convergent Is-
land Statistics method.16

MATERIALS AND METHODS
Profile Construction

STRUCTFAST uses an internally modified version of
PSI-BLAST to compare a protein sequence of interest
against the NCBI’s nonredundant nr database. After 10
PSI-BLAST iterations, the algorithm parses the check-
point file to obtain the probabilities (target frequencies) pi,
where i � 1,2, . . . .20 for the 20 different amino acids at
each sequence position. In addition, our version of PSI-
BLAST reports, for each sequence position, weighted
frequencies rk, where k � 1,2 . . . 20 for the 20 different
amino acids (these are called “observed residue frequen-
cies fk” in PSI-BLAST) as well as the mean number of
different residue types (including the gap character) ob-
served in a neighborhood of the profile column C.3 This
alignment variability measure, denoted by NC, saturates
at 21 and is used in PSI-BLAST to weight the contribution
of the column’s observed amino acid frequencies in estimat-
ing the probabilities of 20 amino acid residues in the
profile column C. In STRUCTFAST rk and NC are used in a
different manner, as explained below.

STRUCTFAST also takes advantage of PSI-BLAST’s
ability to take a multiple sequence alignment instead of a
single sequence as input. For structural templates, the

input to PSI-BLAST is a multiple alignment consisting of
the PDB structures in the template’s Dali structural
alignment.17 This is a standard technique often used to
increase the sensitivity of the database search.

Profile–Profile Scoring Function

In PSI-BLAST, the score for aligning residue R to profile
column C is equivalent to

s�C,R� � log
Pc�R�

PB�R�
, (1)

where PC(R) is the probability of observing letter R in
column C (e.g., its target frequency) and PB(R) is the
overall probability of the residue R (background fre-
quency). A physical analogy of this scoring scheme consists
of throwing weighted 20-sided dice. PC(R) is the probabil-
ity of rolling R on the die C, where the area of each of the
sides on die C is proportional to the frequencies of each
amino acid in the template profile. PB(R) is the probability
of rolling R on the “background die” B, where the area of
each of sides on this die are proportional to the background
amino acid frequencies.

The same approach and analogy can be applied to
profile–profile scoring.15 For profile–profile scoring, in-
stead of computing the probability of a single event
(corresponding to a single residue R), we need to compute
the probability of a series of events (corresponding to the
second profile column C2). Thus, in the context of profile–
profile scoring, Equation (1) has the following form:

s�C1,C2� � log
PC1�C2�

PB�C2�
(2)

A standard manipulation can be employed to make
scoring function 2 symmetric with respect to C1 and C2:

score�C1,C2� � s�C1,C2� � s�C2,C1� (3)

The COMPASS algorithm implements a variant of Equa-
tion (3) along with fixed gap penalties. In COMPASS, the
contribution of each score s(C1,C2) and s(C2,C1) is weighted
and the weights are optimized by running the algorithm on
large validation sets.

The STRUCTFAST scoring scheme employs a direct,
nonweighted calculation of Equation (3). STRUCTFAST
scores depend not only on the similarity between the
profile columns, but also on the “amount of confidence”
(called “thickness” in the COMPASS algorithm) in both
sequential profiles. In other words, even the scores be-
tween similar columns are not high unless there is “confi-
dence” in the quality of both sequential profiles. This
dependence of the scores on the quality of the profiles in
STRUCTFAST establishes the need for an appropriate
scaling of the gap penalties, and also renders the raw
scores (or any alignment statistics based on a fixed back-
ground distribution) useless in ranking the significance of
the database hits. In other words, the choice of the scoring
function (3) mandates the need for (a) profile-pair specific
gap penalties, and (b) profile-pair specific score statistics.
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STRUCTFAST’s profile-pair specific gaps and score sta-
tistics are discussed in greater detail in the following
sections.

An important question that requires further analysis is
how to define an “outcome” (C2). In STRUCTFAST, the
number of times residue Rk is observed in an outcome is
set to nk � NC * rk, where rk and NC are the values
described above. Because the experiment of rolling a die N
times and getting nk occurrences of outcome k is described
by a multinomial,

PC1�C2� � N!�
k�1

20 pk
nk

nk!
(4)

In Equation (4), the values {pk}20
k�1 are target frequen-

cies for residues in the first column (C1), {nk}20
k�1 are the

effective residue counts in the second column (C2), and N

� �
k�1

20 nk.

To compute PB(D), the target frequencies pk for the
background column (die) B are set to the background
probabilities of 20 amino acids, such as Robinson and
Robinson.18

Because of the rigorous analytical treatment of the
profile–profile scores, the STRUCTFAST scoring function
contains no parameters to optimize. An average STRUCT-
FAST score between two randomly chosen profiles is a
small negative number, which implies that the algorithm
stays in the local regime, that is, that the distribution of
random alignment scores follows an Extreme Value Distri-
bution.

Gap Treatment—STRUCTFAST Dynamic
Programming

Incorporating structural information into the alignment
process is known to improve the sensitivity of the align-
ment algorithm. For example, FUGUE19 uses environment-
specific substitution matrices and structure-dependent
gap penalties derived from structure–structure align-
ments in the HOMSTRAD database.20 The scoring func-
tion in ORFEUS12 assigns higher scores to pairs of resi-
dues predicted to be in the same secondary structure state.
The gap penalties in CLUSTALW21 and MODELLER22

are altered based on the environment of the particular gap,
for example, whether or not the gap is located within a
template secondary structure (high penalization) or loop
region (mild penalization). One of the unique features of
STRUCTFAST is a novel dynamic programming approach
that incorporates gap information from a structural family
directly into the alignment process.

STRUCTFAST’s dynamic programming engine allows
for two types of gaps. The first type of gaps are standard,
affine gaps that can be introduced anywhere in the align-
ment. The gap penalties for these gaps are computed
according to the standard formula:

P � O � �l � 1�E (5)

Fig. 1. Structural overlay of 1jnqA (blue) with 1lox (green). The
significantly different loop lengths at the upper left of the overlay lead are
recorded as a STRUCTFAST BRIDGE/BULGE gap.

Fig. 2. The CASP6 Hubbard plot for Target T0197. STRUCTFAST-
SFST is shown in black, STRUCTFAST-BNMX is shown in violet, and
STRUCTFAST-EXPM is shown in yellow. The two orange lines that track the
STRUCTFAST performance belong to the hand modeling groups Baker and
GeneSilico-Group. This target tricked nearly everyone in the competition.

TABLE I. The Structure Alignment Produced by the
Program Dali17 for the Protein Domains 1ovaA and 1by7A
(the C-Terminus of the Alignment has been Truncated at

Residue 189 of 1ovaA)

1ovaA 1by7A

Aligned 1–63 1–63
Gap 64
Aligned 65–68 64–67
Gap 69–78
Aligned 79–91 68–80
Gap 92–97
Aligned 98–189 81–172

The first 63 and the last 91 residues in the structures are aligned.
Residues 69–78 in 1ovaA do not align to any residues in 1by7A, even
though the structures are similar on both sides of the gap. Thus, with
respect to 1by7A, 1ovaA has a 9-residue BULGE in this region.
Conversely, with respect to 1ovaA, the structure 1by7A BRIDGES 9
residues in this region of 1ovaA.
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where l is the length of the gap and O and E are opening
and extension penalties, respectively. The second types of
gaps are special, BRIDGE/BULGE gaps. BRIDGE/BULGE
gaps are possible only in certain parts of the alignments,
namely those that correspond to the regions in the tem-
plate that are inserted or deleted in the template’s struc-
tural alignment with other PDB structures (Fig. 1).

In practice, a BRIDGE/BULGE list for every template is
precalculated, after being harvested from an N � N
structure alignment of every structure in the PDB. Table I
shows a structural alignment of 1ovaA against 1by7A, and
explains how the BRIDGE/BULGE gaps are derived.
Table II shows a partial BRIDGE and BULGE list of
information for the template protein 1ovaA.

BRIDGE/BULGE gaps are incorporated into the dy-
namic programming algorithm via the following recur-
rence formula:

Sij � max�mchij,delij,insij,bbij�, (6)

where

mchij � Si�,j�1 � sij,

delij � Si�p,j�1 � Agap�p � 1�,p � 1

insij � Si�1,j�q � Agap�q � 1�,q � 1

bbij � Si�p,j�q � BBgap�j � q,j,p � 1�,p � 1 or q � 1

In Equation (6), sij is the score for matching profile
columns i and j, Agap(k) is the affine gap penalty for the
gap of length k, and BBgap(a,b,l) is the gap penalty for the
BRIDGE/BULGE gap of length l that spans the template
positions a and b.

Profile-Pair Specific Gap Penalties

In the STRUCTFAST algorithm, the gap opening and
extension penalties for a given pair of profiles are closely
related to the distribution of profile–profile scores. For a
pair of profiles P1 and P2, the gap opening penalty O(P1,P2)
and the gap extension penalty E(P1, P2) are computed as:

O�P1,P2� � min�4*stdev�P1,P2�,max_score�P1,P2��

E�P1,P2� � O�P1,P2�/10 (7)

where max_score(P1,P2) is the maximum column–column
score and stdev(P1,P2) is the standard deviation of the
distribution of column–column scores for P1 and P2.
Because BRIDGE/BULGE gaps are observed in nature,
the BRIDGE/BULGE opening and extension penalty is set
to be 10 times lower than the penalty for an affine gap of
the same length.

The parameters in the Equation (7) are not optimized.
We simply followed some known approaches in defining
the alignment scoring scheme. For example, in many
search algorithms, the gap opening penalty is close to the
maximum entry in the alignment score matrix. However,
the nature of STRUCTFAST’s scoring scheme establishes
a need for placing an upper bound 4* stdev(P1,P2) for the
gap opening penalty, as the maximum column–column
score is sometimes too high.

Following the same idea, the gap opening/gap extension
ratio (10) in the Equation (7) is very close to the parameter
used in many state of the art algorithms for protein
sequence alignment (e.g., BLAST).

More research is needed to see whether the optimization
of the above two values would yield a noticeable improve-
ment in STRUCTFAST’s performance.

Note that the time complexity of the algorithm according
to equation 6 is O(n3). To gain speed, STRUCTFAST uses a
known technique to reduce the computational time for the
standard part of the algorithm (without the BRIDGE/
BULGE term) to O(n2). As BRIDGE/BULGE gaps are
relatively sparse, for a majority of template sequences, the
total execution time is dominated by the O(n2) term.

Alignment Score Significance

The score significance in the STRUCTFAST algorithm is
estimated using Convergent Island Statistics (CIS).16 The
CIS algorithm builds upon the island statistics method23

and is generally applicable to any class of algorithms that
generates local alignments. The main idea behind our
Convergent Island Statistics method is to recognize the
lack of sequence similarity early in the shuffling process
and thus save on the search time. In other words, for a
given pair of sequential profiles, STRUCTFAST computes
conservative estimates of the distribution parameters �
and K based on a small number of profile shuffles, and uses
these values to decide whether to keep or discard any
particular hit. Because any given sequence typically has a
small number of significant hits in a representative, large
database, the vast percentage of comparisons will be
computed very efficiently. On the other hand, if the
sequences are related (or show significant promise of being

TABLE II. A Partial List of the STRUCTFAST BRIDGE/
BULGE Information for the Template 1ovaA

Aligned
Protein

Gap
Type

Start
Residue
in 1ovaA

Stop
Residue
in 1ovaA

No. of
Aligned

Residues

1ovaC BRIDGE 341 354 1
1ovaB BRIDGE 65 79 1
1azxI BULGE 24 25 2
1azxI BULGE 62 63 3
1azxI BRIDGE 66 78 1
1azxI BULGE 92 94 3
1azxI BRIDGE 223 225 1
1azxI BRIDGE 269 272 1
1azxI BULGE 308 309 2
1azxI BULGE 316 317 3
1azxI BULGE 338 341 8
1azxI BRIDGE 345 348 2
1azxI BRIDGE 351 353 1
1by7A BRIDGE 63 65 1
1by7A BRIDGE 68 79 1
1by7A BRIDGE 91 98 1
1by7A BRIDGE 189 193 1
1by7A BULGE 25 237 1
1by7A BULGE 249 250 5
1by7A BULGE 308 309 2
1by7A BRIDGE 339 355 1
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related), CIS approaches the complexity of the brute force
method of doing extensive random shuffles and precisely
estimates the alignment statistics. The payoff of this
rigorous statistical approach to score normalization will be
illustrated later in Example 1.

Because the Convergence Island Statistics is the most
time-consuming procedure in STRUCTFAST, the time
needed to search a database of templates with our method
mainly depends on the number of database sequences
“similar” to the query sequence. Although we have not
done an extensive analysis of the STRUCTFAST’s time
efficiency, our experience shows that the average time to
search PDB with STRUCTFAST on a 2.66-GHz Pentium 4
machine is about 2 h. However, the time complexity
distribution is spread out, resulting in the search time for
some sequences approaching 10 h or more.

RESULTS AND DISCUSSION

Three different versions of the STRUCTFAST algo-
rithm—SFST, BNMX, and EXPM—were entered as
fully automated prediction servers in the recent CAF-
ASP4 and CASP6 benchmark experiments. SFST is a
straightforward implementation of the techniques de-
scribed in this article, reporting an alignment to a single
PDB template. BNMX and EXPM report all atom coordi-
nates. The first set of alpha carbon coordinates in both
BNMX and EXPM is derived from the best SFST align-
ment. Additional alpha carbon coordinates are derived
from the second best (statistically significant) SFST
alignment, but only if there is an overlap between
aligned query residues in the first and the second
alignment. This is a standard technique, frequently
used in many comparative modeling methods such as
MODELLER. The remaining backbone atoms are recon-
structed from the alpha carbon coordinates.24 The differ-

ence between BNMX and EXPM lies in the choice of the
null model for protein sequence families. BNMX as-
sumes a “flat” background model (the background prob-
ability of every amino acid is set to 0.05), whereas EXPM
employs Robinson and Robinson background frequen-
cies.18

We entered three different servers into the prediction
experiments because of the wide variation in the metrics
that are used to evaluate model quality. Some evaluation
metrics tend to reward longer models, even if the addi-
tional residues are modeled less precisely. Other evalua-
tion metrics will tend to penalize longer models if the
additional residues are modeled less precisely. We ex-
pected that BNMX and EXPM would outperform SFST for
evaluation metrics where longer models are rewarded, and
that SFST would perform best under evaluation metrics
where longer models are penalized.

TABLE III. Official Ranking of the Top Individual (Non-
meta) Servers in the Fold Recognition Category at

CAFASP4

Server Total score

STRUCTFAST-SFST 701
STRUCTFAST-EXPM 692
STRUCTFAST-BNMX 678
Raptor 634
Bas_C 582
Mbam 581
Bas_B 574
Sp_3 561
— —
PDB-BLAST 84
— —
BLAST 28
— —

Fold recognition targets roughly correspond to targets that do not have
a good parent structure in the same superfamily. A total of 70
automated servers entered CAFASP4, and the complete table of
results can be found at http://www.cs.bgu.ac.il/	dfischer/CAFASP4/
frn1. The results of the well-known PDB-BLAST and BLAST algo-
rithms are provided for reference.

TABLE IV. Official Ranking of Individual Servers in the
Homology Modeling Category at CAFASP 4

(http://www.cs.bgu.ac.il/	dfischer/CAFASP4/hm1)

Server Total score

STRUCTFAST-EXPM 2058
Inub 2017
STRUCTFAST-BNMX 2010
Shgu 2005
Spk2 1960
Shub 1996
STRUCTFAST-SFST 1999
Sp_3 1944
— —
PDB-BLAST 1859
— —
BLAST 1294

Homology modeling targets are those with a good parent structure in
the same SCOP superfamily. The other well-performing autonomous
servers include consensus methods Shub, Inub, and Shgu25 and two
variants of the SPARKS method.26,27

TABLE V. The Ranking of Servers According to Their
Average Specificity at CAFASP4 (http://www.cs.bgu.ac.il/

	dfischer/CAFASP4/specall)

Server Average specificity

STRUCTFAST-EXPM 46.667
Shub 46.500
STRUCTFAST-SFST 45.833
STRUCTFAST-BNMX 45.667
Bas_C 45.667
Mbam 44.833
Bas_B 44.000
Sparks 43.833
— —
PDB-BLAST 34.333
— —
BLAST 21.500

Aside from the STRUCTFAST and the Shub25 method, which also
perform well in the sensitivity measures, other high specificity meth-
ods include servers from BioinfoBank in Poland, Bas_C, Bas_B and
Mbam.28
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CAFASP4 Results

CAFASP is a prediction evaluation experiment that only
fully automated servers are allowed to enter.8 A total of 70
automated prediction servers entered CAFASP4 for evalu-
ation. The various servers in CAFASP4 were ranked
according to the “N � 1” rule, where N denotes the number
of targets in the divisions. The final rank a server achieves
in CAFASP is the best rank obtained in any subset of size
N � 1. In addition to measuring the algorithms’ sensitivity
on “easy” and “hard” targets, CAFASP4 provides a bench-
mark on a servers’ score specificity. The server’s specificity
is defined as the number of correct predictions that,
according to the reported score, have higher confidence
than the first, second, . . ., or 10th false positive. Tables
3–5 summarize the performance of the top ranking autono-
mous servers in CAFASP4 according to the MaxSubDom
measure. The performance of the various servers with
respect to other CAFASP scoring measures is very similar
and can be accessed at http://www.cs.bgu.ac.il/	dfischer/
CAFASP4.

CASP6 Results

The Sixth Critical Assessment of Techniques for Protein
Structure Prediction (CASP6) ran in parallel with CAF-
ASP4, and we entered this experiment with the same three
algorithms, SFST, BNMX, and EXPM. Because the CASP6
experiment allows expert hand modeling groups to submit
models, it enables the direct comparison of fully auto-
mated servers with expert hand modeling results. A total
of 174 prediction teams participated in CASP6, consisting
of 124 expert hand modeling teams and 50 fully automated
servers. The evaluation metrics used at CASP6 were
different from those used at CAFASP4. CASP traditionally
uses the AL0 and GDT measures. In addition, at CASP6,
the GDT score assigned to any particular protein model
could be penalized if there were “physically impossible”
regions in the structure, as judged by visual inspection.
Table 6 summarizes STRUCTFAST’s rank by the sum of
the average GDT scores in the easy and hard homology
modeling categories at CASP6. The GDT scores shown
were compiled directly from the official CASP6 Web site

TABLE VI. Rankings for the Top 30 Human Modelers and Servers in the Homology Modeling Category
at CASP6, as Measured by the Sum of the Official Raw GDT Scores for the Easy and Hard Comparative

Modeling Categories

Overall
rank

Server
rank CASP6 Group Name

CM-EASY
average GDT

CM-HARD
average GDT

Total CM
average GDT

1 Ginalski 1989.19 1173.03 3162.22
2 Skolnick-Zhang 2 1953.58 1138.49 3092.07
3 KOLINSKI-BUJNICKI 1935.24 1105.17 3040.41
4 GeneSilico-Group 1889.38 1102.23 2991.61
5 CHIMERA 1893.16 1051.56 2944.72
6 1 STRUCTFAST-EXPM 1887.84 1044.60 2932.44
7 SBC-Pmodeller5 1882.07 1043.79 2925.86
8 2 ZHOUSPARKS2 1883.86 1041.27 2925.13
9 FISCHER 1848.65 1075.18 2923.83
10 Jones-UCL 1879.56 1042.42 2921.98
11 SBC 1898.90 1020.71 2919.61
12 TOME 1895.54 1019.10 2914.64
13 Sternberg 1870.24 1043.89 2914.13
14 CBRC-3D 1881.94 1029.81 2911.75
15 CMM-CIT-NIH 1832.65 1076.22 2908.87
16 CAFASP-Consensus 1853.74 1051.45 2905.19
17 BAKER 1887.77 1012.84 2900.60
18 3 zhousp3 1861.71 1038.13 2899.84
19 SAM-T04-hand 1836.36 1050.62 2886.98
20 4 ACE(Meta) 1851.86 1032.12 2883.98
21 MCon 1876.49 991.80 2868.29
22 3D-JIGSAW 1851.69 1016.01 2867.70
23 5 STRUCTFAST-BNMX 1863.88 998.77 2862.65
24 SBC-Pcons5 1850.25 1009.62 2859.87
25 6 STRUCTFAST-SFST 1871.85 987.84 2859.69
26 CaspIta 1896.80 947.65 2844.45
27 BAKER-ROBETTA_04 1846.50 974.97 2821.47
28 7 RAPTOR 1825.75 995.22 2820.97
29 8 BAKER-ROBETTA (Meta) 1813.15 997.50 2810.65
30 UGA-IBM-PROSPECT 1816.87 990.01 2806.88

Expert hand modeling teams are printed in normal font, while fully automated servers are printed in bold. STRUCTFAST-
EXPM was the highest scoring automated server. Given that a total of 124 expert hand modeling teams and 50 automated
servers participated in CASP6, by this scoring metric, STRUCTFAST-EXPM outperformed 100% of the automated servers
and 
96% of the hand modeling teams.
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(http://predictioncenter.org/casp6/Casp6.html). Table 7
shows a ranking of the top servers according to the number
of CASP6 models they placed in the top 20.

As expected, in the CASP6 results, the EXPM and
BNMX servers outperformed SFST by the GDT metric due
to the reward given to the extra residues modeled from the
second highest scoring alignment. Conversely, SFST sig-
nificantly outperformed the EXPM and BNMX servers
according to the AL0 metric, because the extra residues
were penalized more often than they were rewarded.

Specific Example 1: CASP6 Target T0197

STRUCTFAST’s performance on CASP6 Target T0197
illustrates the importance of implementing a rigorous
statistical approach to score normalization in profile–
profile methods. STRUCTFAST was the only automated
server to predict the correct fold for this target (Fig. 2).
Interestingly, STRUCTFAST’s highest raw score was as-
signed to the alignment with 1lgtA (Glyoxalase/Bleomycin
resistance protein/Dihydroxybiphenyl dioxygenase fold),
which was the consensus prediction among most servers at

CASP6. However, the alignment of T0197 to the correct
parent structure 1di8C was correctly assigned the low-
est Convergent Island Statistics E-value (3e�2 vs. 9.3,
Table 8).

CONCLUSION

In summary, STRUCTFAST’s blind benchmark study
prediction results suggest that its novel, structure-based

TABLE VII. The Ranking of CASP6 Groups Using AL0 Measure

Overall
rank

Server
rank CASP6 group name

No. of CASP6 models in the
top 20 by AL0

1 KOLINKSI-BUJNICKI 79
2 Jones-UCL 69
3 GeneSilico-Group 60
4 1 STRUCTFAST-SFST 54
5 BAKER 53
6 Ginalski 51
7 TOME 51
8 Skolnick-Zhang2 50
9 UGA-IBM-PROSPECT 46
10 2 RAPTOR 44
11 CaspIta 43
12 CBRC-3D 38
13 FISCHER 37
14 CHIMERA 34
15 3 BAKER-ROBETTA (Meta) 30
16 SAM-T04-hand 29
17 SBC 28
18 Sternberg 27
T19 CAFASP-Consensus 26
T19 MCon 26
T19 BAKER-ROBETTA_04 26
22 4 STRUCTFAST-EXPM 25
23 5 STRUCTFAST-BNMX 24
T24 T6 zhousp3 23
T24 T6 ZHOUSPARKS2 23
T24 T6 ACE (Meta) 23
27 CMM-CIT-NIH 21
28 SBC-Pcons5 20
29 SBC-Pmodeller5 19
30 3D-JIGSAW 18

As shown in Table VI, the top 30 homology modeling groups at CASP6 included 22 expert
hand modeling groups and 8 automated servers. This table shows the number of CASP6
targets (across all categories) that each of these groups placed in the top 20 according to the
number of correctly aligned residues in the model (the AL0 metric). Only 3 out of 124 hand
modeling groups in the CASP6 competition produced more high quality alignments than
STRUCTFAST-SFST.

TABLE VIII. STRUCTFAST’s Raw Scores and the
Corresponding E-Values Computed by the Convergent

Island Statistics for Target T0197

Template Raw score CIS E-value

1lgtA 66.12 9.3
1mpyA 65.47 2.4
1l9zH 64.70 5.8
1g81A 63.09 9.0
1jh6A 62.44 5.7
1d8iC 59.89 3e-2

1d8iC was the correct template for this target, while 1lgtA was the
consensus false positive assigned by numerous automated servers.
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dynamic programming and unique approach to computing
profile–profile E-values enable it to produce homology
modeling alignments that are commensurate in quality
with those produced by an expert hand modeler. This
significant milestone in the field of protein modeling was
attained by the top performing servers, including STRUCT-
FAST, for the first time at CASP6.
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