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ABSTRACT: Large corpora of kinase small molecule
inhibitor data are accessible to public sector research from
thousands of journal article and patent publications. These
data have been generated employing a wide variety of assay
methodologies and experimental procedures by numerous
laboratories. Here we ask the question how applicable these
heterogeneous data sets are to predict kinase activities and
which characteristics of the data sets contribute to their utility.
We accessed almost 500 000 molecules from the Kinase
Knowledge Base (KKB) and after rigorous aggregation and
standardization generated over 180 distinct data sets covering all major groups of the human kinome. To assess the value of the
data sets, we generated hundreds of classification and regression models. Their rigorous cross-validation and characterization
demonstrated highly predictive classification and quantitative models for the majority of kinase targets if a minimum required
number of active compounds or structure−activity data points were available. We then applied the best classifiers to compounds
most recently profiled in the NIH Library of Integrated Network-based Cellular Signatures (LINCS) program and found good
agreement of profiling results with predicted activities. Our results indicate that, although heterogeneous in nature, the publically
accessible data sets are exceedingly valuable and well suited to develop highly accurate predictors for practical Kinome-wide
virtual screening applications and to complement experimental kinase profiling.

■ INTRODUCTION

Over 500 human protein kinases1 (http://www.kinase.com/)
as well as many nonprotein kinases are involved in virtually
every signal-transduction process, which are controlled by
phosphorylation cascades. Because of their ubiquity, kinases are
one of the most intensely pursued classes of drug targets.
Numerous distinct kinase targets and over 300 kinase inhibitors
are in clinical development,2,3 and 15 protein kinase inhibitor
drugs have been approved so far (compiled from different
sources). While currently most of the clinical kinases drug
targets are being investigated for treatment of cancer, a growing
number of other disorders including immunological, neuro-
logical, metabolic, and infectious diseases have been associated
with dysregulation of protein phosphorylation.4 This suggests
that the number of kinases as potential drug targets is
substantial and has generated huge interest in the development
of small-molecule inhibitors, most of them targeting the ATP
binding site of the kinase catalytic domain.2 The ATP binding
region is highly conserved among protein kinases, which has
important consequences for the drug discovery process.
Achieving selectivity of a small molecule inhibitor against
kinase off-targets to avoid adverse reactions has generally been
considered challenging. On the other hand, the clinical efficacy
of many of the current kinase inhibitor oncology drugs is
related to their polypharmacologytheir ability to inhibit

multiple kinases at the same time.5 It is now well-understood
that the development of novel efficacious and safe compounds
requires a finely tuned balance of polypharmacology and
selectivity.6 Despite the high degree of conservation in the ATP
binding site, reasonably selective inhibitors with favorable
pharmacological properties can be developed.7 This is helped
by the increasing understanding of structural and functional
relationships across the kinome.8,9 Today, it is quite common
to profile inhibitors against an extensive set of kinase targets10

at an early stage of development. Kinase profiling technologies
have generated valuable data sets and provided insights into the
determinants of selectivity and promiscuity of clinical
inhibitors.11−13 One such public effort currently takes place
under the NIH Libraries of Network-based Cellular Signatures
(LINCS) program.14 The LINCS program develops a library of
molecular signatures based on gene expression and other
cellular changes in response to perturbing agents across a
variety of cell types using various high-throughput screening
approaches. LINCS profiled compounds include many kinase
inhibitors, because of their translational potential. LINCS
kinase profiling results are currently available from the HMS
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LINCS DataBase15 and also via the LINCS Information
FrameWork (LIFE).16

High-throughput technologies and conventional screening
over two decades of small molecule kinase inhibitor research
have generated a huge amount of data available in peer-
reviewed publications and patents. In addition to numerous
individual virtual screening approaches, the availability of large
data sets of small molecule kinase inhibitorsin particular in
the pharmaceutical industryhas spurred efforts to utilize the
available data sets to understand and model kinase poly-
pharmacology for example by analysis of inhibitor cross
reactivity17−19 and analysis of kinase chemotype selectivity
patterns.20

Here, we focus on the data that are available in the public
domain. The reliability of heterogeneous data sets generated
under different screening conditions and using different assay
methods and technologies are sometimes questioned. We want
to understand how useful these types of data sets really are. To
do this, we evaluate results from different machine learning
techniques applied to the data. Earlier examples among
numerous machine learning approaches to classify kinase
inhibitors include neural networks trained using BCUTS
descriptors,21 Naiv̈e Bayesian modeling using extended 2D
topological fingerprints and basic molecular descriptors,22 and a
survey of different machine methods using fragment-based
Ghose-Crippen descriptors.23 In an effort toward virtual
polypharmacology, fragments and fragment counts have
successfully been used in prospectively exploring kinase
inhibitor activity space.24,25 Here, we generated and charac-
terized hundreds of kinase classification and regression models
based on a large number of data sets extracted from the Kinase
Knowledge Base (KKB),26 which span the entire human
kinome. The data sets were curated from several thousand peer-
reviewed journal and patent publications from numerous
laboratories comprising various assay technologies, assay
designs, and procedures. We investigated the applicability of
these data sets to generate predictive models, which modeling
technique(s) were best suited and applicable for virtual
screening, and which characteristics of data sets led to good
predictors. We applied the best predictors to compounds
profiled in the LINCS program and found that these profiling
results were in good agreement with predicted actives.

■ METHODS
Kinase Data Sets. The Q4 2009 release of the KKB

incorporated >430 000 bioactivity data points from over 20 000
assay experiments curated from more than 1800 journal articles
and more than 4400 patent publications. It covers over 500 000
unique molecules. The KKB includes various metadata
annotations including standardized target and assay format.
From the available assay experiments only data from
biochemical assays (enzymatic assays, performed with purified
protein) of human species were chosen. Any mutant kinase
targets were excluded. Only high-quality concentration−
response end points (e.g., IC50, Ki) were kept. Because in the
KKB, chemical structures are stored as published, we
standardized all structures using an in-house Pipeline Pilot
protocol.27 Salts/addends and duplicate fragments were
removed (using an in-house salt library) so that each structure
consisted of only one fragment. Stereochemistry and charges
were standardized, the structures were then ionized at pH = 7.4
and tautomers were canonicalized. For the purpose of this
modeling study in which we use extended connectivity

fingerprint of length four (ECFP4) descriptors (see below),
stereochemistry and E/Z geometric configurations were also
removed. All data points were first transformed into p-values
(i.e., pIC50 = −log10[IC50] in molar concentration) and then
aggregated, first within each experiment and then across
experiments by unique structures and kinase targets. Kinase
protein targets were identified by unique standardized Entrez
Gene symbols, which are annotated in the KKB. The kinase
gene symbols were mapped to Uniprot accessions. Although
detailed experimental descriptions are available in the KKB, we
did not filter any assay technologies or experimental conditions.
Identical target-structure data points were aggregated using the
median for exact data points (to minimize the effect of outliers
introduced by different assay methods and experiments) and in
case of qualified data (greater than, less than, range) the most
conservative (inclusive) ranges were kept. This aggressive data
aggregation procedure resulted in 233 667 unique (structure-
target) data points for 126 114 unique structures covering 411
unique kinase targets. We also standardized the structures of all
KKB molecules resulting in a total of 489 373 unique chemical
compounds. Access to these data sets along with the entire
KKB database for academic research groups can be obtained
through the portal www.kinasedb.com. For the naiv̈e Bayesian
classification models, active compounds were defined as p-
transformed activity concentration of greater or equal to 6 (i.e.,
IC50 ≤ 1 μM). Using this definition of “active”, 189 kinase
targets have at least 10 active compounds (see Supporting
Information Table S1; not including TBK1, which includes 169
actives and no inactives). We built naïve Bayesian classification
models treating the data sets in two different ways: in one case,
the classifiers are trained employing only compounds that are
explicitly defined as active or inactive (KA-KI; known active-
known inactive). In the other case, we use all unique KKB
compounds as decoys and presume as inactive all compounds
that are not annotated as actives for any specific kinase (KA-PI;
known active-presumed inactive). For the regression models
(see below) only data points with exact activity values (no <, >,
or range data) were kept. They included data sets for 168
kinases with at least 20 structure−activity data points
(Supporting Information Table S2, which also incudes data
set statistics). To evaluate the activity range of kinase inhibitors
by structural series and the coverage of structural series across
different kinase targets, we clustered all compounds into 336
clusters (twice the number of kinase data sets). We used the
partitioning algorithm implemented in the Pipeline Pilot 8.0
(Accelrys) modeling collection with the Tanimoto distance
function on ECFP4 fingerprints (see below); cluster centers
were selected by maximum dissimilarity. After generating the
clusters, we visualized the pIC50 activity ranges for each kinase
data set for each cluster (Supporting Information Table S3).
KINOMEScan kinase profiling results from the LINCS

project were downloaded from the HMS LINCS DataBase.15 In
total 25 064 data points were obtained with 60 unique
compounds (by HMSL_ID), 43 of them with defined/known
chemical structure, and 486 different targets (including
mutations for several kinases); not all compounds were tested
against all targets. Kinase activity was screened at 10 μM
compound concentration. Reported activities were transformed
into percent inhibition. The kinase targets were manually
annotated with their corresponding Uniprot accessions based
on their symbol/description. The targets were mapped to the
KKB data sets (and models) based on their Uniprot accessions.
A total of 4796 kinase compounds pairs were mapped for
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compounds with known structures after removing mutant
kinase targets from the KINOMEScan data sets.
Laplacien-Corrected Naiv̈e Bayesian Classifiers. Naiv̈e

Bayes is a statistical classification method based on conditional
probabilities: in this context, the probability of a compound
being active given the presence of structural features computed
from the frequencies of occurrence in a training set of active
and inactive samples. “Naiv̈e” refers to the assumption that
features are independent and that the overall probability
therefore can be computed by multiplying probabilities of the
individual events. The Laplacien-corrected estimator accounts
for the different sampling frequencies of different features
assuming that the vast majority of features have no relation with
activity. The Laplacien correction stabilizes the estimator: as
the number of samples containing a feature approaches zero,
the features probability contribution converges to the baseline
probability. The final estimate for a particular sample is
computed as the sum of the logarithm of the relative
(corrected) individual feature weights.22 This classifier has
several desirable criteria. It scales linearly with the number of
molecules and is therefore applicable to large data sets.
Bayesian classification is suitable to model in high-dimensional
spaces (large number of descriptors do not cause overfitting). It
is therefore appropriate for developing models from structurally
dissimilar molecules and to incorporate multiple activity classes
into a single model (for example different sites/binding modes
or different mechanism of action). The Laplacien-corrected
naiv̈e Bayes classification method is also reasonably resistant to
noise such as false positives or false negatives.28 The Pipeline
Pilot modeling collection includes an implementation of this
classification learner, which was employed here.
Here we built Laplacien-corrected naiv̈e Bayesian classi-

fication models based on two different methods of handling the
kinase data sets as described above. Classifiers are trained from
known actives and known inactives (see data sets for 188
kinases provided in Supporting Information Table S1). KA-PI
classifiers were built using one data file of all unique (489 373)
kinase molecules in which the activity categories are defined by
an array containing the respective kinase symbol(s) for which
each compound qualifies as active. The classifiers were then
built by identifying for each individual kinase the active
compounds and treating the remaining compounds as inactive
(decoy). Both types of classification models were first built
using all data sets and characterized by the Pipeline Pilot
internal leave-one-out cross-validation to estimate the area
under the receiver operating characteristic (ROC) curve (ROC
score) and enrichment results (for 1, 5, 10, 25, 50, 75, and
90%). The ROC curve is the true positive rate (TPR) over the
false positive rate (FPR). TPR is equal to sensitivity (S) of the
model and defined and as the number of true positives (TP)
divided by the number of actives (Nact). Specificity (SP) is the
number of true negatives (TN) divided by the number of
inactives (Ninact). FPR is 1 − SP, which is equal to the number
of false positives (FP) divided by Ninact. The enrichment factor
(EF) at any given percentage of compounds tested is defined as
EF = [TP/(TP + FP)]/[Nact/N] where N is the overall number
of samples; it is a measure of how well the predictor recovers
active compounds relative to random retrieval. To validate
these modeling approaches more rigorously, we randomly split
the data sets into 75/25 training/test sets and built the models
using the training sets and generated ROC scores and
enrichment results (for 0.1, 0.5, 1, 3, 5, 10, and 20%) using
the test sets. This randomized train/test evaluation procedure

was repeated 10 times, and the results were averaged over the
repetitions. Supporting Information Tables S1 and S4 report
the modeling results for all 188 and 189 kinase data sets
corresponding to the KA-KI and KA-PI approach, respectively.
Tables S1 and S4 also include the average numbers of training
and test sets for each kinase data set and the maximum
achievable (perfect) enrichment factors (EFmax), which is the
maximum number of actives among the percentage of tested
compounds divided by the fraction of actives in the entire data
set. To evaluate enrichment, we report the ratio of EF/EFmax.
This normalized enrichment factor is a useful measure, because
EF values are not directly comparable across different data sets.
This is because maximum possible EF by definition is limited to
the ratio of total to active compounds in a data set. EF is also
limited to the reciprocal of the fraction of compounds tested.
For example if 0.1% of all compounds are tested, the highest
possible EF is 1000 if the fraction of actives is less or equal to
0.1% of total compounds (and if all retrieved compounds are
true positives). Table S1 incudes some empty fields for EF at
lower percentages, because enrichment factors for a given
percentage of screened compounds can only be obtained if the
number of tested compounds is at least one. For the KA-PI
classification models using the entire set of kinase compounds
as decoy, we further characterized the classifiers by the same
cross-validation procedure employing training/test set ratios of
50/50 as well as 25/75. These results are reported in
Supporting Information Table S5. We also built KA-PI
classifiers from the same chemical structures but after
randomizing the kinase activities while maintaining the number
of actives for each kinase. Leave-one-out cross-validation
resulted in ROC scores of close to 0.5 and enrichment factors
of approximately the ratio of actives to overall number of
samples, which corresponded to random classification as
expected.
To test domain applicability, 53 kinase data sets that each

have at least 500 active compounds were selected and each
clustered into 10 series using the partitioning algorithm
implemented in the Pipeline Pilot 8.0 (Accelrys) modeling
collection with the Tanimoto distance function on ECFP4
fingerprints (the same as for the kinase models, see below);
cluster centers were selected by maximum dissimilarity. For
each kinase data set, 10 models were built, each using a
different series as the (active) test set and the remaining 9
clusters combined as the (active) training set. Inactive test and
training compounds were selected randomly for each model in
the same ratio of active training to test compounds. This way
530 models were built. For each active test compound the
Tanimoto similarity to the closest active training compound
was calculated. ROC scores were computed for each model
based on predictions of the test set to evaluate the performance
of the models based on similarity of the test to the training set
(details are provided in Supporting Information Table S6). In
addition, for each active test set compound the predicted
activity was recorded to evaluate true positive rate as a function
of similarity to the closest training compound. In total 98 731
predictions were made across all 530 models.
To compare predicted kinase activity to the KINOMEScan

profiling results, we used the EstPGood output of the KA-PI
classifiers, the estimated probability that the sample is in the
active category based on an assumed normal distribution within
the active and inactive categories.

Regression Models. Both k nearest neighbor (kNN) and
partial least square (PLS) regression was performed using the
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implementations of these machine learning procedures in the
Pipeline Pilot modeling collection. PLS is a statistical method
to build a (linear) model of the response variable as a function
of (uncorrelated) linear combinations of the input descriptors
(components); it is arguably one of the most traditional, yet
widely used, approaches to qualitative structure−activity
relationship (QSAR) study.29 In our PLS models, we restrict
the number of components to 20. The kNN method is among
the simplest in machine learning algorithms. In kNN
regression, the response variable is computed as a weighted
average of the value of the k nearest neighbors. Here we use 20
nearest neighbors and a dynamic smoothing factor (Gaussian
weighting) of 0.5. For both PLS and kNN, we performed a full
10-fold cross-validation and computed R2 for the training data,
q2 for cross-validation, and RMSE for training and cross-
validation. We repeated the 10-fold full cross-validation
procedure 10 times with random split of the 10 subsets. The
averaged results are reported in Supporting Information Table
S2.
Structural Descriptors. Because of their strong perform-

ance in previous studies,30−32 we employed extended
connectivity fingerprints (ECFPs). Specifically we used atom
type ECFPs of length four (ECFP4) implemented in Pipeline
Pilot.33 ECFPs are topological circular fingerprints character-
izing each atom by its number of atomic connections, element
type, charge and mass, and environment (in this case up to four
neighbor atoms).

■ RESULTS AND DISCUSSION

KA-KI Classifiers. We first built and evaluated Laplacien-
modified naiv̈e Bayesian KA-KI classifiers. For this we selected
all data sets from the preprocessed (aggregated) KKB with
minimum of 10 active compounds where active is defined as p-
transformed activity value of ≥6 (i.e., IC50 < 1 μM). A total of
188 kinase data sets qualify; the minimum data set size (actives

plus inactives) was 26. The classifiers were cross-validated by a
leave-one-out analysis and 10 repetitions of randomized 75/25
training/test split (see Methods). For both cross-validation
methods, ROC scores and enrichment factors show that these
KA-KI classifiers perform well for most of the data sets
(Supporting Information Table S1). Good results are obtained
for data sets with more than 40 active compounds (minimum
61 compounds total), which corresponds to 130 data sets with
a ROC score (leave-one-out) of 0.7 or larger; that is with the
exception of one data set (MST1R) that has only two inactives
and therefore cannot be meaningfully evaluated and was
excluded from further analysis (leaving 129 data sets). Raising
the minimum number of actives to 70 further improves the
results to ROC scores of 0.84 or greater (111 data sets with at
least 113 total samples). ROC scores based on leave-one-out
and 75/25 (train/test) cross-validation procedures are well
correlated for data sets with at least 40 actives (R2 = 0.73) and
increases further for data sets with 70 actives or more (R2 =
0.77) as shown in Figure S1 (Supporting Information).
Correlation of the ROC score of the two cross-validation
procedures increases significantly for data sets with a ratio of
total to active compounds of two or greater: for the data sets
with at least 40 actives, R2 is greater than 0.85, and for data sets
with ≥70 actives, R2 improves to ≥0.93. However, this
decreases the number of data sets to 57 and 47, respectively.
In general the classifiers for the more balanced and larger data
sets performed better.
For the 129 data sets with >40 actives, enrichment factors

(EF) at 10% tested samples varied between ∼1 and ∼8 for both
the leave-one-out and train/test cross-validation procedures.
The maximum enrichment factor (EF max) depends on the
fraction of actives in the data set. For all 129 data sets, the
actual enrichment factors reach the maximum possible
enrichment indicating well-performing classifiers. However,
EF is of limited usefulness to characterize classifiers based on

Figure 1. Characterization of 141 kinase KA-PI protein and nonprotein kinase classifiers, including all major protein kinase groups. ROC scores are
shown as a function of active samples. Shape by protein vs nonprotein kinase, color-coded by kinase group, scaled by number of active data points,
and annotated by HUGO kinase gene symbol.
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balanced data sets. The nature of the data sets reflects what is
typically reported in the literature emphasizing active
compounds and reporting only few (often structurally related)
inactive compounds. In contrast, high-throughput screening
(HTS) results include mostly inactive/negative results. There-
fore, in practice, the KA-KI classifiersalthough highly
predictivemay be of limited utility. Highly miniaturized
HTS allows a throughput of several hundred thousand to
millions of compounds. Consequently, in order to recover a
sizable fraction of hits by screening only a few hundred to
thousand compounds, 100- to 1000-fold enrichment or even
greater would be desirable.
KA-PI Classifiers. We investigated such a scenario by

building KA-PI classifiers for the 189 kinase data sets with at
least 10 actives as defined above. To build these classifiers, we
employ all (489 373) KKB kinase molecules as decoys; i.e., we
presume as inactive all compounds that were not specifically
annotated as active for any given kinase. This resulted in 189
data sets, each consisting of 489 373 samples including 10−
6388 actives. Their size and unbalanced nature corresponded
quite well to real HTS data sets, for example those in
PubChem.34

Laplacien-modified naiv̈e Bayesian classification is a suitable
method to model our data sets of almost half a million unique
kinase-related compounds (see Methods), which can bind at
different sites, such as ATP competitive compounds, but also
allosteric inhibitors, and with different binding modes, for
example type I and type II inhibitors.35 Although many of the
presumed inactive compounds did not have specific activity
annotations, they were all reported in patents and journal
publications that focus on kinase inhibitors. They are thus
closely related in terms of their biological focus and in many
cases structurally.
Similar to the KA-KI classification models, the KA-PI

classifiers were validated by leave-one-out and 10 repetitions
of train/test cross-validation. We report ROC scores and

enrichment factors at various percentages of samples screened.
In addition to the 75/25 split, we also evaluated the classifiers
in a 50/50 and 25/75 training/test cross-validation (10
repetitions averaged, see Methods).
Figure 1 shows ROC score (leave-one-out) as a function of

the number of active samples for all 141 kinases KA-PI
classifiers with at least 25 actives. The 141 kinases cover all
major groups of the human kinome and also several nonprotein
kinases. All 189 models are shown in Supporting Information
Figure S2. As a general trend, it can be seen that the quality of
the classifiers increases with the number of active samples. In
particular, data sets with more than about 50 actives resulted in
much improved results compared to those with fewer actives.
For classifiers with more than a few hundred actives, there
appeared to be no further improvement in ROC score as the
number of actives increases further. For the majority of models,
the ROC scores are very high (>0.96). All details are provided
in Supporting Information Table S4, which shows ROC scores
and enrichment factors for the leave-one-out and 75/25 train/
test cross-validation procedure for all 189 KA-PI kinase
classifiers. Data set statistics are also shown. Supporting
Information Figure S3 illustrates the relationship of ROC
scores for leave-one-out vs 75/25 train/test cross-validation for
KA-PI classifiers based on data sets with at least 10 active
samples vs data sets with at least 50 actives. As with the KA-KI
models, leave-one-out ROC score estimate was closely related
to the ROC score obtained by 75/25 train/test validation, in
particular for the data sets with a greater number of actives.
Supporting Information Table S7 shows the ROC plots for the
KI-PI classifiers based on a data set with >50 actives using a 75/
25 train/test set. While Table S7 shows one ROC plot for each
kinase/data set, it should be noted that ROC scores reported in
Supporting Information Table S4 are averaged over 10
repetitions.
While ROC score is a good measure of the predictors overall

performance, enrichment, in particular for low percentages of

Figure 2. Normalized enrichment factors for 189 KA-PI kinase classifiers at 0.1% screened samples for 75/25 (train/test) cross-validation (10
repetitions averaged) as a function of active compounds in the data set. Shape by protein vs nonprotein kinase, color-coded by kinase group, scaled
by number of active data points, and annotated by HUGO kinase gene symbol.
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screened compounds, is an important measure of the practical
applicability of a predictor. Enrichment factors (EF) at very low
percentages of screened samples for the KA-PI classifiers were
very high for most kinases. Figure 2 illustrates the normalized
enrichment factor, that is the ratio EF/EFmax (see Methods), at
0.1% tested samples for all 189 kinase classifiers based on
randomized 75/25 train/test cross-validation averaged over 10
repetitions. It can be seen that most classifiers are able to
retrieve true actives very well if the number of actives in the
data sets are greater than about 50. Enrichment for these
classifiers is generally greater than 50% of EFmax suggesting that
the kinase classifiers presented here are practically applicable for
virtual screening. Enrichment increased significantly for
classifiers based on data sets of more than ∼50 actives. This
indicated a required minimum number of the active class of the
training set to reliably retrieve true positives from the test set.
This was also reflected in the ROC scores (compare Figure 1).
Absolute EF values for 0.1, 0.5, and 1.0% of tested compounds
are provided in Supporting Information Figure S4 and Table
S4.
Figure 2 suggested the highest enrichments for data sets that

have between 50 and 250 active molecules. The normalized
enrichment factors were slightly lower and relatively stable
around 0.5 for data sets with more than a few hundred actives.
A possible reason for higher enrichment in data sets with
smaller numbers of active compounds that are derived from
only a few studies may lie in overrepresentation of scaffolds
(analog bias; see below for domain applicability results).
However, this is less likely for the larger data sets that have
been extracted from a large number of articles and patents. It
should also be emphasized here that the decoy (presumed
inactive) compounds were all derived from the same kinase
literature that are also the source of the active compounds and
are therefore closely related in terms of their biological focus
and in many cases also structurally. Normalized enrichment
factors obtained by 75/25 train/test cross-validation at 0.1, 0.5,
and 1.0% tested samples are shown in Supporting Information
Figure S5. As the percentage of tested samples increases, a
larger fraction of classifiers show a very high ratio EF/EFmax
(>0.8). Although expected, because the maximum possible
enrichment decreases, the results also indicated that it is more
difficult to retrieve a certain fraction of true positives in a
smaller set of sampled compounds, compared to a larger, i.e.
from 0.1% vs 0.5% or 1.0% tested compounds.
Following standard procedure to further validate the KA-PI

classifiers with our data, we randomized the kinase activities
(maintaining the number of actives for each kinase data set).
Leave-one-out cross-validation resulted in ROC scores of close
to 0.5 and EF of approximately the ratio of actives to overall
number of samples. This corresponded to random classification
as expected.
We also investigated how the ratio of training and test sets

influenced the ROC and enrichment cross-validation results for
the various kinase data sets. In addition to 75/25 (Supporting
Information Table S4), we split the data into by 50/50 and 25/
75 (Supporting Information Table S5). ROCs were slightly
higher for larger compared to smaller training sets (Supporting
Information Figure S6) indicating improved overall predict-
ability, which was also consistent with the general trend of the
ROC scores as a function of the number of active samples
(Figure 1 and Supporting Information Figure S2). More
specifically, as the ratio of training/test compounds decreased,
the required number of active compounds in the data sets to

give very good ROC (>0.96) increased. This suggested a
threshold of required active (training) compounds to develop
very good predictors.
In contrast to increased overall predictivity (measured by

ROC score) for larger (compared to smaller) train/test ratios,
enrichment factors at very low percentages of tested
compounds (0.1% and 0.5%) increased slightly with lower
(compared to higher) ratios of train/test sets. Figure 3

illustrates the average ratio of EF/EFmax at 0.1% tested samples
for the different train/test ratios across data sets for various
ranges of numbers of active compounds. Other than for the
lowest bin of active compounds (0−400), enrichment at 0.1%
increases as the ratio of train/test decreases. Supporting
Information Figures S7 and S8 show EF and EFmax for each
individual data set as a function of active compounds for the
three train/test ratios at 0.1 and 0.5% tested samples,
respectively. Supporting Information Figure S9 shows the
normalized enrichment factors (EF/EFmax) for each data set at
0.1% tested samples, illustrating the same trend. Although the
ratio of active to inactive compounds is the same among the
different train/test splits, these results suggest that it is “easier”
for the classifier to select true actives from a test set with a
larger (in absolute numbers) pool of active compounds.
Because the trend holds for the data sets with the highest
numbers of actives, it is likely not a trivial analog bias; although
classifiers are based on structural features and therefore true
positive test compounds are by definition structurally related to
the active training compounds. More importantly, the results
indicated again that once a certain number of active compounds
are available, classifier performance does not increase
significantly with additional data. This is consistent with the
validation results described above based on ROC and EF.
To evaluate how similarities of test to training compounds

affect model performance, we performed a simple domain
applicability study (Figure 4, compare methods). Data sets with
at least 500 active compounds were selected (53 kinase data
sets representative of most of the human kinome), and the
actives of each data set were clustered into 10 series. Ten
models were generated each using one series as test set while
using the remaining combined 9 clusters as training set. This
way predictions are made for compounds that are structurally

Figure 3. Average normalized enrichment (EF/EFmax) at 0.1% tested
samples for different train/test ratios binned by ranges of active
compounds across 141 kinase data sets with at least 25 actives (EF
averaged over 10 repetitions).
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dissimilar to training compounds. In this way, 530 models were
generated and evaluated. Figure 4A shows a histogram of
closest test-to-training set similarities by ROC score; results are
shown for data sets with at least 10 active test compounds (443
models). Specifically we investigated ROC score as a function
of the similarity of test set cluster center to the closest training
compound (B), the average of the closest similarities of the test
set compounds to the training set compounds (C), and the
similarity of the closest training compound to any test
compound (D). As can be seen, the best criteria of model
applicability is the average closest similarity of the test
compounds to the training compounds (panel C). The models
show good predictivity (ROC > 0.8) for relatively low average
closest similarities (>0.5).
In addition to ROC score for each model (cluster), we

recorded the predictions of all active compounds over all 530
models (98 731 predictions total) and evaluated the hit rate as a
function of similarity of the predicted test compound to the
closest training compound (Supporting Information Figure
S10). Figure S10A shows the true positive rate (TPR), and
Figure S10B shows the distribution of true positives and actives
as a function of closest similarity of the test compound to the
training set. TPR drops off sharply as the similarity decreases
below 0.5, and the TPR is greater than 0.8 for compounds with
a Tanimoto similarity of >0.6 (ECFP4).

To illustrate the potential applicability of the KA-PI models
for virtual screening, Figure 5 shows the enrichment results at
0.1% tested samples as the fraction of true positives obtained
from the test set vs the fraction of actives in the entire data set.
As expected the true positive rate increases with the ratio of
active to total compounds until the latter reaches 0.1% after
which the true positives identified from the test set remain
relatively constant between 40 and 80%. In this plot, the
enrichment factor achieved by each classifier at 0.1% is the
quotient of the y and the x values. In practical terms, were the
KA-PI classification models applied to prioritize 500 com-
pounds from a library of about 500 000, one may expect to
recover anywhere from 10 to 400 actives depending on the
number of actual actives for a given kinase target. Thus these
models appear practically applicable, assuming that our data
sets reasonably well represent the kinase inhibitor chemical
space.
The performance of the Laplacien-modified naiv̈e Bayesian

kinase KA-PI classifiers based on ROC scores and enrichment
at very low percentages of tested compounds indicate that the
data sets employed here are well-suited to build highly
predictive kinase classification models. The results consistently
suggest that the best classifiers are obtained if a minimum
number of conservatively 50 active training compounds are
available against a large decoy set. Performance of the models

Figure 4. Model domain applicability. KA-PI model performance as measured by ROC score as a function of similarity of test to training sets. 443
models are shown for 53 kinases (representative of most of the human kinome). (A) Average closest similarities by binned ROC score. Shown are
closest individual similarities (blue), cluster average closest similarities (red), and cluster center closest similarities (yellow). (B) ROC score by
cluster center closest similarities. (C) ROC score by cluster average closest similarities. (D) ROC score by individual closest similarities (cluster
global closest similarity).

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci300403k | J. Chem. Inf. Model. XXXX, XXX, XXX−XXXG



can be further improved with additional active compounds of
up to a few hundred but does not improve much beyond this.
Given the low ratio of structure−activity data points to unique
compounds in the KKB, it is likely that some of the presumed
inactive (decoy) compounds are in fact active against one or
several kinases. It is therefore feasible that the kinase KA-PI
classifiers can be further improved as more kinase profiling data
sets become available.
Regression Models. In addition to the naiv̈e Bayes binary

classifiers we also wanted to evaluate how suitable the data sets
are for the development of quantitative predictors. We chose
partial least square (PLS) and k nearest neighbor (kNN)
regression as two fairly different learning methods to
quantitatively predict a continuous property. PLS and kNN
regression are considered most applicable for data sets of
congeneric (structurally similar) molecules. The methods can
be sensitive to outliers and require high-quality data. Here, 168
kinase data sets with at least 20 exact molecule-activity data
points were extracted from the standardized and aggregated
KKB data sets (see Methods). PLS and kNN QSAR models
were built as described and evaluated by 10-fold cross-
validation, which was further repeated 10 times randomly
partitioning the data. All cross-validation results (including, q2,
and RMSE) and data set statistics are summarized in
Supporting Information Table S2. Figure 6 illustrates q2 values
for the kNN vs PLS models along with the number of
structure-data points for each kinase. The kNN method in
general outperformed PLS, and the performance (measured by
q2) of both methods correlated reasonably well. From Figure 6,
one can also conclude a trend in which the predictive quality
for both PLS and kNN models generally improved with the size
of the data sets. Although this trend was not as strict as what we
observed for the naiv̈e Bayes classifiers, a cutoff for kNN q2 ≥
0.4 and PLS q2 ≥ 0.25 leaves 91 kinase data setsall except
three having greater or equal to 50 structure-data points (also
compare Figure 8). For kinases with 500 or more data points,
all but one model have kNN q2 values of >0.5.
Another important characteristic influencing the quality of

both PLS and kNN was the activity range of the data sets.

Figure 7 illustrates the average q2 for both kNN and PLS as a
function of the p-transformed activity range, which corresponds

to the orders of magnitude between the most and least active
compound. PLS and kNN q2 values continuously increased
from 0.1 to >0.8 as the activity range increased from 1 to 12
orders of magnitude. To evaluate the activity range across
structural series and to see how structural series distribute
across different kinase data sets, we clustered compounds into
336 clusters and calculated activity ranges for each kinase for
each cluster (see Methods and Supporting Information Table
S3). Supporting Information Figure S11 shows the total
number of kinases and activity range of each cluster. These
results show that many structural series span a wide activity
range and many kinases suggesting that a scaffold bias should
not be a general concern for the models built using these data
sets.
Figure 8 shows kNN and PLS models (characterized by q2

and number of structure-data points) for 91 kinases (selected
from 182 total models) with kNN q2 ≥ 0.4 and PLS q2 ≥ 0.25.

Figure 5. Fraction of true positives (TP) of the number of tested
compounds in 0.1% of the test set as a function of the ratio of actives
to total compounds for different ratios of training to test data. Also
indicated is the enrichment factor as the size of the circles. The
enrichment factor (at 0.1%) for each classifier is the quotient of y value
and the x value.

Figure 6. Quantitative regression models developed from 168 kinase
data sets. q2 values of kNN vs PLS regression models and the number
of kinase activity data points indicated by the circle size and color (see
text).

Figure 7. Average q2 for kNN and PLS regression cross-validation
results as a function of the p-value range (defined as p-valuemax − p-
valuemin) of all 168 kinase data sets.
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These include protein and nonprotein kinases and all major
kinase groups. The quality of the majority of the models is quite
good indicated by q2 and also R2 values (compare Supporting
Information Table S2).
PLS and kNN regression are very different machine learning

methods. For many of the kinase data sets we obtained high
quality models with both methods, in particular the larger data
sets and distinctly the ones spanning a wider activity range.
These kinase data appear particularly well-applicable for
quantitative modeling, and by that measure, they are of high
quality.
Application of Classification Models to LINCS Kinase

Profiling Data. Because of their exceptional performance, we
tested the KA-PI classifiers on data recently generated in the
NIH LINCS project (see Introduction). The recent KINO-
MEScan screening technology11,13 is used at the Harvard
Medical School LINCS center to profile compounds against
486 targets. We applied the KA-PI classification models to the
43 compounds with known structures. Figure 9 illustrates the
probability that a compound is active against a kinase and the
corresponding actual activity based on the KINOMEScan
profiling results. Shown are all data with greater than 10%
probability of activity for targets that could be mapped to the
KINOMEScan results (see Methods). All compounds, targets,
predictions, and percent inhibition values are given in
Supporting Information Table S8. As can be seen, all but
three activity predictions are confirmed by these screening
results given a probability cutoff of 10% and an activity of >60%
inhibition; the majority of actives even have greater than 90%
inhibition. If we select a 60% probability cutoff, there is only
one outlier as shown in Figure 9 (CSK) predicted as highly
likely active, but with 0% inhibition. This appears to be a false
positive; PD173074, an FGFR inhibitor has a reported IC50 of
∼20 μM for CSK (KBB, Eidogen-Sertanty). Overwhelmingly

however, the kinase model activity predictions are in agreement
with the KINOMEScan profiling results.
In addition to correct predictions of active kinase inhibitors,

the classifiers’ predicted activities overall correspond very well
to the LINCS KINOMEScan results. Figure 10 illustrates the
aggregated (sum) probabilities of activity (by kinase category)
for all mapped compound target combinations (see Methods)
by binned percent inhibition. As can be seen, predicted kinase
activity probabilities are much greater for compounds reported
as active in the profiling results and in particular for the most
active category (>90% inhibition). Supporting Information
Figure S12 shows the histogram of mapped KINOMEScan
activity results with the vast majority being inactive (<10%
inhibition), and which correspond to very low predicted
probability of activity (Figure 10).
These results illustrate very good performance of the

classifiers. Although expected, it should be noted that, because
KINOMEScan profiling was performed at a relatively high
screening concentration of 10 μM, a relatively large percentage
of compounds appear active (Supporting Information Figure
S12); this is in contrast to predictions that are based on models
with an activity cutoff of IC50 ≤ 1 μM. Nonetheless the
KINOMEScan results are in very good concordance with the
KA-PI model predictions.

■ SUMMARY AND CONCLUSION

Here we investigated the quality and value of publically
accessible heterogeneous data sets of small molecule kinase
inhibitors, which were aggregated from thousands of journal
articles and patents. Because data sets are generated by
numerous methods and technologies and under different
conditions, their integrity and usefulness is sometimes
questioned. We used different machine learning approaches
to establish the quality and utility of these data. We were able to

Figure 8. kNN and PLS activity predictors for 91 kinases (q2 kNN > 0.4 and q2 PLS > 0.25) by the number of data points. Data sets include protein
and nonprotein kinases and all major kinase groups. kNN q2 is shown by number of (unique) structure−data points. The symbol indicates protein vs
nonprotein kinase, the size is scaled by PLS q2, colored by kinase group, and annotated by HUGO kinase gene symbol.

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci300403k | J. Chem. Inf. Model. XXXX, XXX, XXX−XXXI



generate and validate very high-quality kinase activity predictors
for a large and diverse number of kinase targets.
From almost 500 000 kinase-related compounds, we

extracted over 180 diverse structure−activity data sets covering
all major groups of the human kinome. We applied different
machine learning techniques including naiv̈e Bayes binary
classification and quantitative kNN and PLS regression.
Rigorous cross-validation demonstrated reliable predictors for
the majority of kinase targets if a minimum required number of
active compounds or structure−activity data points were
available. For the types of data sets investigated here, the best
results for the largest number of kinases were obtained using
Laplacien-corrected naiv̈e Bayes classifiers trained (for any
specific kinase) on known actives and a large background set of
kinase-family focused presumed inactive compounds (KA-PI
approach). This method resulted in very good ROC scores and
very high enrichment rates for the majority of targets in
particular for data sets with greater than 50 active compounds.
The Laplacien-modified naiv̈e Bayes classifiers generally
improved when increasing the numbers of actives to a few
hundred, but not much beyond that. Model domain
applicability studies suggested that the classifiers are applicable
to novel compounds and provide guidance to interpret virtual
screening results. We applied the KA-PI classifiers to
compounds recently profiled in the NIH LINCS project and
found very good agreement of predicted kinase inhibition to
actual screening results. Using kNN and PLS regression, we
also obtained high-quality models for a large number of diverse

kinase targets; in particular for data sets with greater than 50
structure−activity records and spanning a wide activity range.
All data employed here were derived from biochemical

concentration−response human (nonmutant) protein kinase
assays. The data sets combined different assay methods,
technologies, and various experimental procedures from
numerous laboratories. After preprocessing of the data using
a rigorous data standardization and aggregation procedure, our
results indicate that the data sets are very well suitable to
develop highly accurate predictors employing different machine
learning techniques and are, by that measure, of high quality.
The various kinase screening technologies and conditions
appear to generate, on average, consistent results. This is
supported by excellent predictivity of the various models and
very good agreement of predicted kinase activity modeled on
heterogeneous data compared to the KINOMEScan LINCS
results, which were all generated under the same conditions
using the same competition binding assay. However,
heterogeneity of the data may be one reason why we observe
a distinct increase of model performance with a minimum
number of active compounds or structure−activity data points.
Depending on the number of actual actives in the specific data
sets from which the models were built, the best KA-PI
classifiers were able to retrieve between 40 and 80% true
positives among only 0.1% of all compounds. These results
suggest that they are practically applicable with great potential
for virtual screening of large libraries across the kinome.
Moreover, our results suggest that the KA-PI predictors are

Figure 9. Probability (EstPGood) of compounds predicted active against a kinase based on KA-PI kinase classifiers and actual KINOMEScan
percent inhibition values (at 10 μM). Compare with Supporting Information Table S8. Kinases are classified by groups and protein vs nonprotein
kinases.
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useful to complement actual kinase profiling screening results,
for example to identify likely false negatives.
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